Seismic Wave Scattering and Dissipation in Fractured Shales

Seismic attenuation in granular porous media is of paramount importance in rock physics and seismology. Unlike sandstones, shales are mixtures of sand grains and clays with extremely low porosity and permeability. Swelling of clays upon wetting induce micro-cracks at grain-clay interfaces and results in the strong elastic wave scattering. Such scattering prevents adequate measurements of the absorption from ballistic wave attenuations. Here we infer this intrinsic attenuation from multiply scattered waves as in seismology and ultrasonics. We find that increasing confining pressure reduces the scattering attenuation by micro-crack closure but increases surprisingly the absorption, likely due to the viscous dissipation involved with more liquids adsorbed in clays and at grain surfaces. Also, we observe that cyclic heating and cooling causes the shrinkage of clays and the growth of microcracks as well as the nucleation of macro-fractures. This leads to a predominant chaotic reverberation in this fractured shale. Numerical simulations based on X-ray tomography of the fractured sample confirm the multiple scattering behavior and reveal the increase of a characteristic length from an initial intact to a finally fractured shale. This study helps to improve acoustic techniques for multiscale exploration of gas and oil in shales and other fractured rocks.

[1]  J. Simpson,et al.  Temperature‐Induced Nonlinear Elastic Behavior in Berea Sandstone Explained by a Modified Sheared Contacts Model , 2022, Journal of Geophysical Research: Solid Earth.

[2]  A. Tourin,et al.  Monte Carlo Simulations of Ultrasound Scattering and Absorption in Finite-Size Heterogeneous Materials , 2021, Physical Review Applied.

[3]  M. Chandler,et al.  In-situ synchrotron characterisation of fracture initiation and propagation in shales during indentation , 2020 .

[4]  A. Tourin,et al.  Ultrasonic tracking of a sinking ball in a vibrated dense granular suspension , 2018, Scientific Reports.

[5]  H. Sabine Room Acoustics , 1953, The SAGE Encyclopedia of Human Communication Sciences and Disorders.

[6]  P. Sedlák,et al.  Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains. , 2018, The Journal of the Acoustical Society of America.

[7]  Ranjith Pathegama Gamage,et al.  Characteristics of Clay-Abundant Shale Formations: Use of CO2 for Production Enhancement , 2017 .

[8]  C. Sayers,et al.  The elastic anisotropy of clay minerals , 2016 .

[9]  H. Wenk,et al.  On the evolution of the elastic properties of organic-rich shale upon pyrolysis-induced thermal maturation , 2016 .

[10]  David Smeulders,et al.  Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom , 2016 .

[11]  B. Halphen,et al.  Microscale insight into the influence of humidity on the mechanical behavior of mudstones , 2015 .

[12]  Branko Glisic,et al.  Crack detection and characterization techniques—An overview , 2014 .

[13]  Michel Bornert,et al.  Irreversible deformation and damage in argillaceous rocks induced by wetting/drying , 2014 .

[14]  Qiang Wang,et al.  Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States , 2014 .

[15]  Y. Guéguen,et al.  Physical properties and brittle strength of thermally cracked granite under confinement , 2013 .

[16]  W. Murphy,et al.  Acoustic Velocity and Attenuation in Porous Rocks , 2013 .

[17]  Tapan Mukerji,et al.  Digital rock physics benchmarks - Part I: Imaging and segmentation , 2013, Comput. Geosci..

[18]  M. Lebedev,et al.  Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review , 2010 .

[19]  Stéphane Rondenay,et al.  Effects of surface scattering in full-waveform inversion , 2009 .

[20]  M. Tuller,et al.  Segmentation of X‐ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures , 2009 .

[21]  G. Ghoshal,et al.  Numerical model of longitudinal wave scattering in polycrystals , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  Franz-Josef Ulm,et al.  The nanogranular acoustic signature of shale , 2009 .

[23]  P. Mills,et al.  Mechanisms for acoustic absorption in dry and weakly wet granular media. , 2008, Physical review letters.

[24]  H. Wenk,et al.  Elastic anisotropy of clay , 2008 .

[25]  Yves Guéguen,et al.  Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs , 2007 .

[26]  Anas Sakout,et al.  On the use of a diffusion model for acoustically coupled rooms , 2006 .

[27]  Murray Hodgson,et al.  On the use of a diffusion equation for room-acoustic prediction , 2006 .

[28]  T. Okamoto,et al.  Simulations of SH wave scattering due to cracks by the 2-D finite difference method , 2006 .

[29]  L. Margerin Introduction to Radiative Transfer of Seismic Waves , 2013 .

[30]  Erik H. Saenger,et al.  Scattering and diffraction by a single crack: an accuracy analysis of the rotated staggered grid , 2005 .

[31]  X. Jia Codalike multiple scattering of elastic waves in dense granular media. , 2004, Physical review letters.

[32]  James G. Berryman,et al.  Seismic attenuation due to wave-induced flow , 2004 .

[33]  A. Paul,et al.  Separation of intrinsic absorption and scattering attenuation from Lg coda decay in central France using acoustic radiative transfer theory , 2003 .

[34]  Osamu Nishizawa,et al.  Laboratory Study on Scattering Characteristics of Shear Waves in Rock Samples , 2003 .

[35]  J. Duran,et al.  Nonlinearity and Slow Dynamics in Rocks : Response to Changes of Temperature and Humidity , 2003 .

[36]  Weiren Lin Permanent strain of thermal expansion and thermally induced microcracking in Inada granite , 2002 .

[37]  Luděk Klimeš,et al.  Correlation Functions of Random Media , 2002 .

[38]  Roel Snieder,et al.  Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity , 2002, Science.

[39]  Erik H. Saenger,et al.  Effective velocities in fractured media: a numerical study using the rotated staggered finite‐difference grid , 2002 .

[40]  Jun Kawahara Cutoff scattering angles for random acoustic media , 2002 .

[41]  U. Wegler,et al.  Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment , 2001 .

[42]  B. V. van Tiggelen,et al.  Observation of equipartition of seismic waves. , 2001, Physical review letters.

[43]  W. Haneberg The Rock Physics Handbook , 1999 .

[44]  J. Berryman,et al.  Elastic moduli of cemented sphere packs , 1999 .

[45]  X. Jia,et al.  Ultrasound Propagation in Externally Stressed Granular Media , 1999 .

[46]  J. Barbera,et al.  Contact mechanics , 1999 .

[47]  Youli Quan,et al.  Seismic attenuation tomography using the frequency shift method , 1997 .

[48]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[49]  Weitz,et al.  Experimental test of the diffusion approximation for multiply scattered sound. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Amos Nur,et al.  Effective properties of cemented granular materials , 1994 .

[51]  L. Vernik Microcrack‐induced versus intrinsic elastic anisotropy in mature HC‐source shales , 1993 .

[52]  K. Aki Scattering conversions P to S versus S to P , 1992, Bulletin of the Seismological Society of America.

[53]  A. Nur,et al.  Ultrasonic velocity and anisotropy of hydrocarbon source rocks , 1992 .

[54]  M. Fehler,et al.  Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance , 1992 .

[55]  Richard L. Weaver,et al.  Diffusivity of ultrasound in polycrystals , 1990 .

[56]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[57]  Terry D. Jones,et al.  Pore fluids and frequency‐dependent wave propagation in rocks , 1986 .

[58]  D. H. Johnston Physical properties of shale at temperature and pressure , 1987 .

[59]  K. Winkler Contact stiffness in granular porous materials: Comparison between theory and experiment , 1983 .

[60]  Amos Nur,et al.  Seismic attenuation: Effects of pore fluids and frictional-sliding , 1982 .

[61]  P. J. Digby,et al.  The Effective Elastic Moduli of Porous Granular Rocks , 1981 .

[62]  Herbert F. Wang,et al.  Ultrasonic velocities in Cretaceous shales from the Williston basin , 1981 .

[63]  J. Richardson,et al.  Possible mechanism for seismic attenuation in rocks containing small amounts of volatiles , 1980 .

[64]  M. N. Toksoz,et al.  Attenuation of seismic waves in dry and saturated rocks; I, Laboratory measurements , 1979 .

[65]  D. H. Johnston,et al.  The attenuation of seismic waves in dry and saturated rocks , 1978 .

[66]  Bernard Budiansky,et al.  Viscoelastic properties of fluid-saturated cracked solids , 1977 .

[67]  Amos Nur,et al.  Melt squirt in the asthenosphere , 1975 .

[68]  Yih-Hsing Pao,et al.  Diffraction of elastic waves and dynamic stress concentrations , 1973 .

[69]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[70]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[71]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[72]  R. L. Ingram FISSILITY OF MUDROCKS , 1953 .