Exploring patterns of empirical networks

We are constantly struggling to understand how nature works, trying to identify recurrent events and looking for analogies and relations between objects or individuals. Knowing patterns of behavior ...

[1]  L. da F. Costa,et al.  A generalized approach to complex networks , 2006 .

[2]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  N. Gotelli,et al.  NULL MODELS IN ECOLOGY , 1996 .

[4]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[5]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[6]  W. Edmunds,et al.  Dynamic social networks and the implications for the spread of infectious disease , 2008, Journal of The Royal Society Interface.

[7]  D. Watts,et al.  Multiscale, resurgent epidemics in a hierarchical metapopulation model. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Heath,et al.  Construction of networks with intrinsic temporal structure from UK cattle movement data , 2008, BMC veterinary research.

[9]  V Latora,et al.  Small-world behavior in time-varying graphs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Taro Takaguchi,et al.  Voter model with non-Poissonian inter-event intervals , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[12]  S. Bornholdt,et al.  World Wide Web scaling exponent from Simon's 1955 model. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[14]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[15]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[16]  Melanie Mitchell,et al.  Complexity - A Guided Tour , 2009 .

[17]  Petter Holme,et al.  The Contact Network of Inpatients in a Regional Healthcare System. A Longitudinal Case Study , 2007 .

[18]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[19]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[20]  Carl T. Bergstrom,et al.  The map equation , 2009, 0906.1405.

[21]  N. Masuda,et al.  Controlling nosocomial infection based on structure of hospital social networks , 2008, Journal of Theoretical Biology.

[22]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[23]  Jean-Pierre Eckmann,et al.  Entropy of dialogues creates coherent structures in e-mail traffic. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. N. Gilbert Computational Social Science , 2010 .

[25]  J. I The Design of Experiments , 1936, Nature.

[26]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[27]  Alessandro Vespignani,et al.  Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions , 2007, PLoS medicine.

[28]  G. V. Chester,et al.  Solid State Physics , 2000 .

[29]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[30]  Thilo Gross,et al.  Adaptive coevolutionary networks: a review , 2007, Journal of The Royal Society Interface.

[31]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[32]  W. Bainbridge The Scientific Research Potential of Virtual Worlds , 2007, Science.

[33]  Diego Garlaschelli,et al.  Patterns of link reciprocity in directed networks. , 2004, Physical review letters.

[34]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[35]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[36]  L. Meyers,et al.  Susceptible–infected–recovered epidemics in dynamic contact networks , 2007, Proceedings of the Royal Society B: Biological Sciences.

[37]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[38]  R. F. Cancho,et al.  Topology of technology graphs: small world patterns in electronic circuits. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Luciano da Fontoura Costa,et al.  Musical genres: beating to the rhythms of different drums , 2009, ArXiv.

[40]  Selective pressure on metabolic network structures as measured from the random blind-watchmaker network , 2010, 1010.6185.

[41]  Douglas D. Heckathorn,et al.  Respondent-driven sampling : A new approach to the study of hidden populations , 1997 .

[42]  Esteban Moro Egido,et al.  The dynamical strength of social ties in information spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Ciro Cattuto,et al.  Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks , 2010, PloS one.

[44]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[45]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[46]  Manfred S. Green,et al.  When is an epidemic an epidemic? , 2002, The Israel Medical Association journal : IMAJ.

[47]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[48]  A. Franklin,et al.  EXPERIMENT IN PHYSICS , 1998, The Aim and Structure of Physical Theory.

[49]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[50]  Paul J. Roebber,et al.  What Do Networks Have to Do with Climate , 2006 .

[51]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[52]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[53]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[55]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[56]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[57]  Paul Erdös,et al.  On random graphs, I , 1959 .

[58]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[59]  Declan Butler Data sharing threatens privacy , 2007, Nature.

[60]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[61]  Fredrik Liljeros,et al.  Preferential attachment in sexual networks , 2007, Proceedings of the National Academy of Sciences.

[62]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[63]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[65]  Jon M. Kleinberg,et al.  Tracing information flow on a global scale using Internet chain-letter data , 2008, Proceedings of the National Academy of Sciences.

[66]  S. Blower,et al.  Predicting the public health impact of antiretrovirals: preventing HIV in developing countries. , 2003 .

[67]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[68]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[69]  Ronald L. Breiger,et al.  Pattern across networks , 1975 .

[70]  Matt J. Keeling,et al.  Representing the UK's cattle herd as static and dynamic networks , 2008, Proceedings of the Royal Society B: Biological Sciences.

[71]  Esteban Moro,et al.  Impact of human activity patterns on the dynamics of information diffusion. , 2009, Physical review letters.

[72]  Luis E C Rocha,et al.  Exploiting Temporal Network Structures of Human Interaction to Effectively Immunize Populations , 2010, PloS one.

[73]  James Moody,et al.  The Importance of Relationship Timing for Diffusion , 2002 .

[74]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[76]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[77]  Christel Kamp,et al.  Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics , 2009, PLoS Comput. Biol..

[78]  S. Havlin,et al.  Scaling laws of human interaction activity , 2009, Proceedings of the National Academy of Sciences.

[79]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[80]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[81]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[82]  V. Jansen,et al.  Modelling the influence of human behaviour on the spread of infectious diseases: a review , 2010, Journal of The Royal Society Interface.

[83]  W. Schaper,et al.  Factors Regulating Arteriogenesis , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[84]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[85]  Pawel Sobkowicz,et al.  Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality , 2009, J. Artif. Soc. Soc. Simul..

[86]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[87]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[88]  Paul Ormerod,et al.  The Medieval inquisition: scale-free networks and the suppression of heresy , 2004 .

[89]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[90]  D. Watts,et al.  An Experimental Study of Search in Global Social Networks , 2003, Science.

[91]  R. Mantegna Hierarchical structure in financial markets , 1998, cond-mat/9802256.

[92]  Sven Van Segbroeck,et al.  Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics , 2010, PLoS Comput. Biol..

[93]  Albert-László Barabási,et al.  Linked - how everything is connected to everything else and what it means for business, science, and everyday life , 2003 .

[94]  Sally Blower,et al.  An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it y , 2004 .

[95]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[96]  Michael Szell,et al.  Multirelational organization of large-scale social networks in an online world , 2010, Proceedings of the National Academy of Sciences.

[97]  L. Stone,et al.  Seasonal dynamics of recurrent epidemics , 2007, Nature.

[98]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[100]  M. Kretzschmar,et al.  Concurrent partnerships and the spread of HIV , 1997, AIDS.

[101]  A. Rapoport,et al.  Connectivity of random nets , 1951 .

[102]  Luciano da F. Costa,et al.  Hierarchical spatial organization of geographical networks , 2007, 0706.3975.

[103]  E. Faerstein,et al.  A DICTIONARY OF EPIDEMIOLOGY , 2016 .

[104]  Petter Holme,et al.  The network organisation of consumer complaints , 2010 .

[105]  Luis E C Rocha,et al.  Structural evolution of the Brazilian airport network , 2008, 0804.3081.

[106]  Larry Sawers,et al.  Concurrent sexual partnerships do not explain the HIV epidemics in Africa: a systematic review of the evidence , 2010, Journal of the International AIDS Society.

[107]  A. Motter,et al.  Rescuing ecosystems from extinction cascades through compensatory perturbations. , 2011, Nature communications.

[108]  Martin A. Nowak,et al.  Infectious Disease Modeling of Social Contagion in Networks , 2010, PLoS Comput. Biol..

[109]  R. Mikolajczyk,et al.  Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases , 2008, PLoS medicine.

[110]  Jari Saramäki,et al.  Small But Slow World: How Network Topology and Burstiness Slow Down Spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[112]  R. N. Mantegna,et al.  Hierarchical structure in nancial markets , 1999 .

[113]  Gianluigi Oliveri,et al.  Mathematics. A Science of Patterns? , 1997, Synthese.

[114]  Mark E. J. Newman,et al.  Ego-centered networks and the ripple effect , 2001, Soc. Networks.

[115]  Godfrey H. Hardy,et al.  A mathematician's apology , 1941 .

[116]  Dirk Helbing,et al.  Transient dynamics increasing network vulnerability to cascading failures. , 2007, Physical review letters.

[117]  Erik M Volz Dynamics of infectious disease in clustered networks with arbitrary degree distributions , 2010 .

[118]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[119]  John Scott What is social network analysis , 2010 .

[120]  Patrick Thiran,et al.  Layered complex networks. , 2006, Physical review letters.

[121]  A. Barabasi,et al.  Impact of non-Poissonian activity patterns on spreading processes. , 2006, Physical review letters.

[122]  Mitsuhiro Nakamura,et al.  Predictability of conversation partners , 2011, ArXiv.

[123]  Richard White,et al.  An Introduction to Infectious Disease Modelling , 2010 .

[124]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[125]  Luciano da Fontoura Costa,et al.  2D pattern evolution constrained by complex network dynamics , 2007 .

[126]  Thilo Gross,et al.  Epidemic dynamics on an adaptive network. , 2005, Physical review letters.

[127]  Cecilia Mascolo,et al.  Analysing information flows and key mediators through temporal centrality metrics , 2010, SNS '10.

[128]  S. Dehaene,et al.  Converging Intracranial Markers of Conscious Access , 2009, PLoS biology.

[129]  Shweta Bansal,et al.  The dynamic nature of contact networks in infectious disease epidemiology , 2010, Journal of biological dynamics.

[130]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[131]  Luis E C Rocha,et al.  Information dynamics shape the sexual networks of Internet-mediated prostitution , 2010, Proceedings of the National Academy of Sciences.

[132]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[133]  Matt J. Keeling,et al.  Insights from unifying modern approximations to infections on networks , 2010, Journal of The Royal Society Interface.

[134]  Clifford Konold,et al.  Making Sense of Randomness " Implicit Encoding as a Basis for Judgment , 1997 .

[135]  Petter Holme,et al.  Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts , 2010, PLoS Comput. Biol..

[136]  Hawoong Jeong,et al.  Statistical properties of sampled networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[137]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[138]  Petter Holme,et al.  Structure and time evolution of an Internet dating community , 2002, Soc. Networks.

[139]  Beom Jun Kim,et al.  Percolation on hyperbolic lattices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  D. Stau,et al.  Election results and the Sznajd model on Barabasi network , 2002 .

[141]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[142]  N. Biggs,et al.  Graph Theory 1736-1936 , 1976 .

[143]  Maria A. Kazandjieva,et al.  A high-resolution human contact network for infectious disease transmission , 2010, Proceedings of the National Academy of Sciences.

[144]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[145]  S N Dorogovtsev,et al.  Language as an evolving word web , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[146]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[147]  Jürgen Kurths,et al.  Recurrence networks—a novel paradigm for nonlinear time series analysis , 2009, 0908.3447.

[148]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[149]  Petter Holme,et al.  Efficient local strategies for vaccination and network attack , 2004, q-bio/0403021.

[150]  F. Liljeros,et al.  Spatial Bridges and the Spread of Chlamydia: The Case of a County in Sweden , 2007, Sexually transmitted diseases.

[151]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.