The fractional strong metric dimension in three graph products

For any two distinct vertices $x$ and $y$ of a graph $G$, let $S\{x, y\}$ denote the set of vertices $z$ such that either $x$ lies on a $y-z$ geodesic or $y$ lies on an $x-z$ geodesic. Let $g: V(G) \rightarrow [0,1]$ be a real valued function and, for any $U \subseteq V(G)$, let $g(U)=\sum_{v \in U}g(v)$. The function $g$ is a strong resolving function of $G$ if $g(S\{x, y\}) \ge 1$ for every pair of distinct vertices $x, y$ of $G$. The fractional strong metric dimension, $sdim_f(G)$, of a graph $G$ is $\min\{g(V(G)): g \mbox{ is a strong resolving function of }G\}$. In this paper, after obtaining some new results for all connected graphs, we focus on the study of the fractional strong metric dimension of the corona product, the lexicographic product, and the Cartesian product of graphs.

[1]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of Cartesian and direct products of graphs , 2014, Discret. Math..

[2]  E. Sampathkumar On tensor product graphs , 1975 .

[3]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[4]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[5]  Ortrud R. Oellermann,et al.  The strong metric dimension of graphs and digraphs , 2007, Discret. Appl. Math..

[6]  P. M. Weichsel THE KRONECKER PRODUCT OF GRAPHS , 1962 .

[7]  W. Imrich,et al.  Handbook of Product Graphs, Second Edition , 2011 .

[8]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of corona product graphs and join graphs , 2012, Discret. Appl. Math..

[9]  David R. Wood,et al.  Extremal Graph Theory for Metric Dimension and Diameter , 2007, Electron. J. Comb..

[10]  Juan A. Rodríguez-Velázquez,et al.  Strong resolving graphs: The realization and the characterization problems , 2016, Discret. Appl. Math..

[11]  David E. R. Sitton,et al.  MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS , 1996 .

[12]  Pranava K. Jha,et al.  Independence in Direct-Product Graphs , 1998, Ars Comb..

[13]  Eunjeong Yi,et al.  The Fractional Strong Metric Dimension of Graphs , 2013, COCOA.

[14]  Juan A. Rodríguez-Velázquez,et al.  Closed Formulae for the Strong Metric Dimension of Lexicographic Product Graphs , 2014, Discuss. Math. Graph Theory.

[15]  Min Feng,et al.  On the fractional metric dimension of corona product graphs and lexicographic product graphs , 2018, Ars Comb..

[16]  E. Scheinerman,et al.  Fractional Graph Theory: A Rational Approach to the Theory of Graphs , 1997 .

[17]  Sylvain Gravier Hamiltonicity of the cross product of two Hamiltonian graphs , 1997, Discret. Math..