The HOL/NuPRL Proof Translator (A Practical Approach to Formal Interoperability)
暂无分享,去创建一个
[1] G. Mints. A Short Introduction to Intuitionistic Logic , 2000 .
[2] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[3] Joseph A. Goguen,et al. Institutions: abstract model theory for specification and programming , 1992, JACM.
[4] Pavel Naumov. Importing Isabelle Formal Mathematics into NuPRL , 1999 .
[5] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[6] Bengt Nordström,et al. Programming in Martin-Lo¨f's type theory: an introduction , 1990 .
[7] Bengt Nordström,et al. Programming in Martin-Löf's Type Theory , 1990 .
[8] Amy P. Felty,et al. Hybrid Interactive Theorem Proving Using Nuprl and HOL , 1997, CADE.
[9] Wai Wong,et al. Validation of HOL Proofs by Proof Checking , 1999, Formal Methods Syst. Des..
[10] Douglas J. Howe. Importing Mathematics from HOL into Nuprl , 1996, TPHOLs.
[11] Rance Cleaveland,et al. Implementing mathematics with the Nuprl proof development system , 1986 .
[12] Pavel Naumov. Formalization of Isabelle Meta Logic in NuPRL , 1999 .
[13] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[14] Tobias Nipkow,et al. Proof Terms for Simply Typed Higher Order Logic , 2000, TPHOLs.
[15] David B. MacQueen,et al. The Definition of Standard ML (Revised) , 1997 .
[16] Ewen Denney. A Prototype Proof Translator from HOL to Coq , 2000, TPHOLs.
[17] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[18] Hugo Herbelin,et al. The Coq proof assistant : reference manual, version 6.1 , 1997 .
[19] Lawrence Charles Paulson,et al. Isabelle: A Generic Theorem Prover , 1994 .
[20] Douglas J. Howe. Semantic Foundations for Embedding HOL in Nuprl , 1996, AMAST.
[21] Robin Milner,et al. Definition of standard ML , 1990 .