A general concept of majority rule

Abstract We develop a general concept of majority rule for finitely many choice alternatives that is consistent with arbitrary binary preference relations, real-valued utility functions, probability distributions over binary preference relations, and random utility representations. The underlying framework is applicable to virtually any type of choice, rating, or ranking data, not just the linear orders or paired comparisons assumed by classic majority rule social welfare functions. Our general definition of majority rule for arbitrary binary relations contains the standard definition for linear orders as a special case.

[1]  Adrian Van Deemen,et al.  The Probability of the Paradox of Voting for Weak Preference Orderings , 1999 .

[2]  Salvador Barberà,et al.  Falmagne and the Rationalizability of Stochastic Choices in Terms of Random Orderings , 1986 .

[3]  W. R. Buckland,et al.  Contributions to Probability and Statistics , 1960 .

[4]  A. A. J. Marley,et al.  Context dependent probabilistic choice models based on measures of binary advantage , 1991 .

[5]  Jonathan Barzilai,et al.  On the foundations of measurement , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[6]  Scott L. Feld,et al.  Research note Partial single-peakedness: An extension and clarification , 1986 .

[7]  R. Luce,et al.  What common ground exists for descriptive, prescriptive, and normative utility theories? , 1994 .

[8]  Wulf Gaertner,et al.  Cyclically Mixed Preferences—A Necessary and Sufficient Condition for Transitivity of the Social Preference Relation , 1978 .

[9]  C. Plott,et al.  The Probability of a Cyclical Majority , 1970 .

[10]  Eugene Galanter,et al.  Handbook of mathematical psychology: I. , 1963 .

[11]  H. D. Block,et al.  Random Orderings and Stochastic Theories of Responses (1960) , 1959 .

[12]  Mathieu Koppen,et al.  Random utility representation of binary choice probabilities: critical graphs yielding critical necessary conditions , 1995 .

[13]  Benjamin Radcliff,et al.  Condorcet Winners and the Paradox of Voting: Probability Calculations for Weak Preference Orders , 1995, American Political Science Review.

[14]  I. Rabinovitch,et al.  The Dimension of Semiorders , 1978, J. Comb. Theory, Ser. A.

[15]  Michel Regenwetter,et al.  Random relations, random utilities, and random functions , 2001 .

[16]  Regenwetter Random Utility Representations of Finite m-ary Relations , 1996, Journal of mathematical psychology.

[17]  Reinhard Suck Geometric and combinatorial properties of the polytope of binary choice probabilities , 1992 .

[18]  Melvin J. Hinich,et al.  Probabilistic Voting and the Importance of Centrist Ideologies in Democratic Elections , 1984, The Journal of Politics.

[19]  John Duggan,et al.  A General Extension Theorem for Binary Relations , 1999 .

[20]  R. Sugden,et al.  Regret Theory: An alternative theory of rational choice under uncertainty Review of Economic Studies , 1982 .

[21]  Michel Regenwetter,et al.  On the (Sample) Condorcet Efficiency of Majority Rule: An alternative view of majority cycles and social homogeneity , 2002 .

[22]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[23]  Salvador Barberà,et al.  Majority and Positional Voting in a Probabilistic Framework , 1979 .

[24]  B. Grofman,et al.  Approval Voting, Borda Winners, and Condorcet Winners: Evidence From Seven Elections , 1998 .

[25]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[26]  Xavier Vila On the Intransitivity of Preferences Consistent with Similarity Relations , 1998 .

[27]  A. Tversky Intransitivity of preferences. , 1969 .

[28]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[29]  Jean-Michel Grandmont,et al.  INTERMEDIATE PREFERENCES AND THE MAJORITY RULE , 1978 .

[30]  Michel Regenwetter,et al.  Probabilistic preferences and topset voting , 1997 .

[31]  K. Arrow Social Choice and Individual Values , 1951 .

[32]  R. Duncan Luce,et al.  Choice, Decision, and Measurement: Essays in Honor of R. Duncan Luce , 1997 .

[33]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[34]  Stephen Ansolabehere,et al.  The Nature of Utility Functions in Mass Publics , 1989, American Political Science Review.

[35]  James M. Enelow,et al.  A general probabilistic spatial theory of elections , 1989 .

[36]  Joseph S. Verducci,et al.  Probability models on rankings. , 1991 .

[37]  Michel Regenwetter,et al.  On the probabilities of correct or incorrect majority preference relations , 2003, Soc. Choice Welf..

[38]  P. Hammond,et al.  Handbook of Utility Theory , 2004 .

[39]  Michel Regenwetter,et al.  The impartial culture maximizes the probability of majority cycles , 2003, Soc. Choice Welf..

[40]  M. Kane Measurement theory. , 1980, NLN publications.

[41]  P. Fishburn Probabilistic Social Choice Based on Simple Voting Comparisons , 1984 .

[42]  Patrick Suppes,et al.  Mathematical methods in the social sciences, 1959 : proceedings of the first Stanford Symposium , 1962 .

[43]  Daniel McFadden,et al.  Advances in computation, statistical methods, and testing of discrete choice models , 1991 .

[44]  Peter C. Fishburn,et al.  The probability of the paradox of voting: A computable solution , 1976 .

[45]  L. L. Thurstone,et al.  Three psychophysical laws. , 1927 .

[46]  Reinhard Niederée,et al.  Generalizing the concept of binary choice systems induced by rankings: one way of probabilizing deterministic measurement structures , 1992 .

[47]  Peter J. Coughlin,et al.  Probabilistic Voting Theory , 1992 .

[48]  L. Thurstone A law of comparative judgment. , 1994 .

[49]  B. Grofman,et al.  A stochastic model of preference change and its application to 1992 presidential election panel data , 1999 .

[50]  E. Roskam,et al.  Mathematical psychology in progress , 1989 .

[51]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[52]  Michel Regenwetter,et al.  A random utility model for approval voting , 1996 .

[53]  William T. Trotter,et al.  A Bound on the Dimension of Interval Orders , 1976, J. Comb. Theory, Ser. A.

[54]  D. Saari Basic Geometry of Voting , 1995 .

[55]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[56]  Peter C. Fishburn,et al.  Induced binary probabilities and the linear ordering polytope: a status report , 1992 .

[57]  William V. Gehrlein,et al.  The probability of intransitivity of pairwise comparisons in individual preference , 1989 .

[58]  Michel Regenwetter,et al.  Choosing subsets: a size-independent probabilistic model and the quest for a social welfare ordering , 1998 .

[59]  Andranik Tangian,et al.  Unlikelihood of Condorcet’s paradox in a large society , 2000, Soc. Choice Welf..

[60]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[61]  Hans W. Gottinger,et al.  Decision Theory and Social Ethics , 1978 .

[62]  J. Marschak Binary Choice Constraints on Random Utility Indicators , 1959 .

[63]  Jean-Claude Falmagne,et al.  A representation theorem for finite random scale systems , 1978 .

[64]  Peter C. Fishburn,et al.  Towards a Theory of Elections with Probabilistic Preferences , 1977 .

[65]  Daniel McFadden Advances in computation, statistical methods, and testing of discrete choice models , 1991 .

[66]  Falmagne Stochastic Token Theory , 1997, Journal of mathematical psychology.

[67]  Reinhard Niederée,et al.  Elements of a Model-Theoretic Framework for Probabilistic Measurement , 1989 .

[68]  Joseph S. Verducci,et al.  Probability Models and Statistical Analyses for Ranking Data , 1992 .

[69]  Craig A. Tovey,et al.  Probability and convergence for supra-majority rule with Euclidean preferences , 1992 .

[70]  Peter C. Fishburn,et al.  A Probabilistic Model of Social Choice: Comment' , 1975 .

[71]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .