Upper bound on our knowledge about noncommuting observables for a qubit system (Non-Commutative Analysis and Micro-Macro Duality)

A trade-off relation on our knowledge about two noncommuting observables of a qubit system in simultaneous measurement is formulated. The obtained inequality offers a quantitative information-theoretic representation of Bohr's principle of complementarity, and can be interpreted as a trade-off relation on the asymptotic accuracy of the maximum-likelihood estimation of the probability distributions of observables.

[1]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[2]  Preparation and measurement: two independent sources of uncertainty in quantum mechanics , 1999, quant-ph/9901010.

[3]  Masanao Ozawa Uncertainty relations for joint measurements of noncommuting observables , 2004 .

[4]  Stephen M. Barnett,et al.  Joint measurements of spin, operational locality, and uncertainty (8 pages) , 2005 .

[5]  Reinhard F. Werner The uncertainty relation for joint measurement of position and momentum , 2004, Quantum Inf. Comput..

[6]  Igor Devetak,et al.  Fidelity trade-off for finite ensembles of identically prepared qubits , 2001 .

[7]  H. P. Robertson The Uncertainty Principle , 1929 .

[8]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[9]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[11]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[12]  H. Haus,et al.  Preparation, measurement and information capacity of optical quantum states , 1986 .

[13]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[14]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[15]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[16]  W. D. Muynck,et al.  Nonideal quantum measurements , 1990 .

[17]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[18]  T. Heinonen,et al.  Noise and disturbance in quantum measurement , 2004 .

[19]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[20]  Masanao Ozawa Uncertainty relations for noise and disturbance in generalized quantum measurements , 2003 .

[21]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[22]  M. Jammer The philosophy of quantum mechanics , 1974 .

[23]  P. Busch,et al.  Unsharp reality and joint measurements for spin observables. , 1986, Physical review. D, Particles and fields.

[24]  M. Scully,et al.  Joint Wigner distribution for spin-1/2 particles , 1986 .

[25]  Goodman,et al.  Quantum correlations: A generalized Heisenberg uncertainty relation. , 1988, Physical review letters.

[26]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[27]  M. Hall,et al.  Prior information: How to circumvent the standard joint-measurement uncertainty relation , 2003, quant-ph/0309091.

[28]  P. Busch,et al.  Uncertainty reconciles complementarity with joint measurability , 2003 .

[29]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .