Lightweight electrowetting display on ultra-thin glass substrate

Mobile display devices that use ultra-thin (≤100 µm) glass substrates offer a combination of attractive characteristics: lightweight, high quality device fabrication process, thermal and dimensional stability, and mechanical flexibility. Electrowetting (EW) devices fabricated on ultra-thin glass are demonstrated in this paper. Water contact angle, which is the most critical parameter of EW devices, changes from ~165° to 80° when a 20 V direct current (or alternating current) voltage is applied. EW devices on ultra-thin glass show negligible hysteresis (~2°) and fast switching time of ~10 ms. EW device operation is maintained when the glass substrate is mechanically flexed. These results indicate the promise of narrow profile EW devices on ultra-thin glass substrate for mobile and other devices, including video rate flexible electronic paper.

[1]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A J Steckl,et al.  Complementary electrowetting devices on plasma-treated fluoropolymer surfaces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  A. J. Steckl,et al.  Circuits on cellulose , 2013, IEEE Spectrum.

[4]  B. Berge,et al.  Electrowetting : a recent outbreak , 2001 .

[5]  R. Forchheimer,et al.  Towards woven logic from organic electronic fibres. , 2007, Nature materials.

[6]  J. Heikenfeld Lite, brite displays , 2010, IEEE Spectrum.

[7]  A. Steckl,et al.  Electrowetting: a flexible electronic-paper technology , 2011 .

[8]  Sungmee Park,et al.  Smart Textiles: Wearable Electronic Systems , 2003 .

[9]  E. Huitema The Future of Displays Is Foldable , 2012 .

[10]  M. Weaver,et al.  Thin-film permeation-barrier technology for flexible organic light-emitting devices , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[12]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[13]  Jin-seong Park,et al.  Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors , 2009 .

[14]  Display Glass: Bigger, Thinner, and Stronger , 2012 .

[15]  Dong-Woo Kim,et al.  Reflective and transflective liquid crystal displays for low-power mobile applications , 2005, SPIE Optics + Photonics.

[16]  A. Steckl,et al.  Three-color electrowetting display device for electronic paper , 2010 .

[17]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[18]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[19]  Yi-Jen Chan,et al.  Electrophoretic Displays Fabricated on Ultra-Slim Flexible Glass Substrates , 2012, Journal of Display Technology.

[20]  H. Verheijen,et al.  REVERSIBLE ELECTROWETTING AND TRAPPING OF CHARGE : MODEL AND EXPERIMENTS , 1999, cond-mat/9908328.

[21]  Andrew J. Steckl,et al.  Electrowetting on Flexible Substrates , 2012 .

[22]  A. Steckl,et al.  Electrowetting on paper for electronic paper display. , 2010, ACS applied materials & interfaces.