Detecting structural information of scatterers using spatial frequency domain imaging

Abstract. We demonstrate optical phantom experiments on the phase function parameter γ using spatial frequency domain imaging. The incorporation of two different types of scattering particles allows for control of the optical phantoms’ microscopic scattering properties. By laterally structuring areas with either TiO2 or Al2O3 scattering particles, we were able to obtain almost pure subdiffusive scattering contrast in a single optical phantom. Optical parameter mapping was then achieved using an analytical radiative transfer model revealing the microscopic structural contrast on a macroscopic field of view. As part of our study, we explain several correction and referencing techniques for high spatial frequency analysis and experimentally study the sampling depth of the subdiffusive parameter γ.

[1]  Venkataramanan Krishnaswamy,et al.  Structured light scatteroscopy , 2014, Journal of biomedical optics.

[2]  C. Depeursinge,et al.  Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path , 1999 .

[3]  Alwin Kienle,et al.  Optical phantoms with adjustable subdiffusive scattering parameters , 2015, Journal of biomedical optics.

[4]  U. A. Gamm,et al.  Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation. , 2012, Optics letters.

[5]  Arjen Amelink,et al.  In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy. , 2004, Optics letters.

[6]  A. Amelink,et al.  In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy , 2013, Biomedical optics express.

[7]  Keith D. Paulsen,et al.  High spatial frequency structured light imaging for intraoperative breast tumor margin assessment , 2015, Photonics West - Biomedical Optics.

[8]  Alwin Kienle,et al.  Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging. , 2015, Applied optics.

[9]  Ravikant Samatham,et al.  Determine scattering coefficient and anisotropy of scattering of tissue phantoms using reflectance-mode confocal microscopy , 2009, BiOS.

[10]  S. Jacques,et al.  Imaging superficial tissues with polarized light , 2000, Lasers in surgery and medicine.

[11]  Christian Depeursinge,et al.  A new optical method for the non-invasive detection of minimal tissue alterations. , 2002, Physics in medicine and biology.

[12]  Alwin Kienle,et al.  Spatially modulated light source obliquely incident on a semi-infinite scattering medium. , 2012, Optics letters.

[13]  Michael S Sacks,et al.  Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. , 2015, Biomedical optics express.

[14]  Steven L. Jacques,et al.  Determine scattering coefficient and anisotropy of scattering of murine tissues using reflectance-mode confocal microscopy , 2013, Photonics West - Biomedical Optics.

[15]  Amaan Mazhar,et al.  Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging. , 2014, Journal of biomedical optics.

[16]  Arjen Amelink,et al.  Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle , 2013, Journal of biomedical optics.

[17]  Alwin Kienle,et al.  Exact and efficient solution of the radiative transport equation for the semi-infinite medium , 2013, Scientific Reports.

[18]  Anthony J. Durkin,et al.  Quantitation and mapping of tissue optical properties using modulated imaging. , 2009, Journal of biomedical optics.

[19]  Venkataramanan Krishnaswamy,et al.  Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging. , 2014, Biomedical optics express.

[20]  M J Dodge,et al.  A special method for precise refractive index measurement of uniaxial optical media. , 1969, Applied optics.

[21]  R. Richards-Kortum,et al.  Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. , 2003, Journal of biomedical optics.

[22]  D Boas,et al.  Transport-based image reconstruction in turbid media with small source-detector separations. , 2000, Optics letters.

[23]  Steven L. Jacques Probing nanoscale tissue structure using light scattering , 2015 .

[24]  Ruikang K. Wang Modelling optical properties of soft tissue by fractal distribution of scatterers , 2000 .

[25]  Sylvain Gioux,et al.  Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging. , 2010, Journal of biomedical optics.

[26]  Christian Depeursinge,et al.  Physical interpretation of the phase function related parameter γ studied with a fractal distribution of spherical scatterers. , 2010, Optics express.

[27]  Alwin Kienle,et al.  Sources of errors in spatial frequency domain imaging of scattering media , 2014, Journal of biomedical optics.

[28]  Yang Pu,et al.  Determination of Optical Coefficients and Fractal Dimensional Parameters of Cancerous and Normal Prostate Tissues , 2012, Applied spectroscopy.

[29]  A. Kienle,et al.  Polarization influence on reflectance measurements in the spatial frequency domain , 2015, Physics in medicine and biology.

[30]  Venkataramanan Krishnaswamy,et al.  Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging , 2013, Breast Cancer Research.

[31]  J. R. DeVore,et al.  Refractive Indices of Rutile and Sphalerite , 1951 .

[32]  Norman J. McCormick,et al.  Approximate two-parameter phase function for light scattering , 1980 .

[33]  Min Xu,et al.  Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures. , 2008, Journal of biomedical optics.

[34]  Alwin Kienle,et al.  Optimized goniometer for determination of the scattering phase function of suspended particles: simulations and measurements , 2013, Journal of biomedical optics.

[35]  Christian Depeursinge,et al.  In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties. , 2003, Journal of biomedical optics.