Optimum coordinate number of clusters and best clustering in fuzzy C-means

A coordinate function of criteria on the basis of intra- and inter-distances in the fuzzy C-means (FCM) is proposed. Iterative self-organizing data analysis technique algorithm (ISODATA) and discrete particle swarm optimization (PSO) are combined to form a PSO self-organizing data analysis technique algorithm (PSO-ISODATA), which is used to conduct the optimal computing of FCM. Compared to other methods, our method can be used not only to do optimal clustering but also to yield the optimum coordinate number of clusters and the corresponding optimal clustering without artificial interference according to the clustering criteria, given a preset number of clustering. PSO-ISODATA has a wide application. When other cluster criteria are adopted, only the fitness function is needed to be modified.

[1]  Muammer Ozer,et al.  Fuzzy c-means clustering and Internet portals: A case study , 2005, Eur. J. Oper. Res..

[2]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[4]  James C. Bezdek,et al.  Optimization of clustering criteria by reformulation , 1995, IEEE Trans. Fuzzy Syst..

[5]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[6]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[7]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[8]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[9]  James C. Bezdek,et al.  Local convergence of the fuzzy c-Means algorithms , 1986, Pattern Recognit..

[10]  M. Roubens Fuzzy clustering algorithms and their cluster validity , 1982 .

[11]  Joe Suzuki,et al.  A Further Result on the Markov Chain Model of Genetic Algorithms and Its Application to a Simulated Annealing-like Strategy , 1998, FOGA.

[12]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[13]  Doheon Lee,et al.  On cluster validity index for estimation of the optimal number of fuzzy clusters , 2004, Pattern Recognit..

[14]  James C. Bezdek,et al.  Cluster validation with generalized Dunn's indices , 1995, Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems.

[15]  R. Solow A Contribution to the Theory of Economic Growth , 1956 .

[16]  T. Pham,et al.  Applications of genetic algorithms, geostatistics, and fuzzy c-means clustering to image segmentation , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..

[18]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[19]  P. Romer Endogenous Technological Change , 1989, Journal of Political Economy.

[20]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[21]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[22]  T Watson Layne,et al.  A Genetic Algorithm Approach to Cluster Analysis , 1998 .

[23]  Roy George,et al.  A variable-length genetic algorithm for clustering and classification , 1995, Pattern Recognit. Lett..

[24]  Boudewijn P. F. Lelieveldt,et al.  A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..