Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification

Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T–segment) through a transient double-strand break in a second segment of DNA (gate or G–segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this non-equilibrium topology simplification remains speculative. The bend angle model postulates that non-equilibrium topology simplification scales with the bend angle imposed on the G–segment DNA by the binding of a type IIA topoisomerase. To test this bend angle model, we used atomic force microscopy and single-molecule Förster resonance energy transfer to measure the extent of bending imposed on DNA by three type IIA topoisomerases that span the range of topology simplification activity. We found that Escherichia coli topoisomerase IV, yeast topoisomerase II and human topoisomerase IIα each bend DNA to a similar degree. These data suggest that DNA bending is not the sole determinant of non-equilibrium topology simplification. Rather, they suggest a fundamental and conserved role for DNA bending in the enzymatic cycle of type IIA topoisomerases.

[1]  Hossein Hassani,et al.  On the Folded Normal Distribution , 2014, 1402.3559.

[2]  A. Fosberry,et al.  Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance , 2010, Nature Structural &Molecular Biology.

[3]  H. Chan,et al.  Action at hooked or twisted-hooked DNA juxtapositions rationalizes unlinking preference of type-2 topoisomerases. , 2010, Journal of molecular biology.

[4]  I. Laponogov,et al.  Structural Basis of Gate-DNA Breakage and Resealing by Type II Topoisomerases , 2010, PloS one.

[5]  B. Schmidt,et al.  A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases , 2010, Nature.

[6]  Hue Sun Chan,et al.  Local site preference rationalizes disentangling by DNA topoisomerases. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  E. Le Cam,et al.  Specific DNA-protein interactions on mica investigated by atomic force microscopy. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[8]  L. V. van Vliet,et al.  DNA deformations near charged surfaces: electron and atomic force microscopy views. , 2009, Biophysical journal.

[9]  I. Laponogov,et al.  Structural insight into the quinolone–DNA cleavage complex of type IIA topoisomerases , 2009, Nature Structural &Molecular Biology.

[10]  K. Neuman,et al.  Mechanisms of chiral discrimination by topoisomerase IV , 2009, Proceedings of the National Academy of Sciences.

[11]  A. Vologodskii Theoretical models of DNA topology simplification by type IIA DNA topoisomerases , 2009, Nucleic acids research.

[12]  N. Osheroff,et al.  Coordinating the two protomer active sites of human topoisomerase IIalpha: nicks as topoisomerase II poisons. , 2009, Biochemistry.

[13]  J. Berger,et al.  How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of nonsupercoiling type II topoisomerases. , 2009, Journal of molecular biology.

[14]  H. Chan,et al.  The why and how of DNA unlinking , 2009, Nucleic acids research.

[15]  N. Osheroff,et al.  The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing , 2008, Nucleic acids research.

[16]  J. Berger,et al.  DNA topoisomerases: harnessing and constraining energy to govern chromosome topology , 2008, Quarterly Reviews of Biophysics.

[17]  J. Berger,et al.  Structural basis for gate-DNA recognition and bending by type IIA topoisomerases , 2007, Nature.

[18]  J. Berger,et al.  Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI , 2007, Nature Structural &Molecular Biology.

[19]  Anthony Maxwell,et al.  Energy coupling in type II topoisomerases: why do they hydrolyze ATP? , 2007, Biochemistry.

[20]  D. Sumners,et al.  Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation , 2007, BMC Molecular Biology.

[21]  A. Arneodo,et al.  Probing persistence in DNA curvature properties with atomic force microscopy. , 2007, Physical review letters.

[22]  P. Forterre,et al.  Origin and evolution of DNA topoisomerases. , 2007, Biochimie.

[23]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[24]  A. Shluger,et al.  Simple model for DNA adsorption onto a mica surface in 1:1 and 2:1 electrolyte solutions. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[25]  H. Chan,et al.  Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases. , 2006, Journal of molecular biology.

[26]  E. L. Zechiedrich,et al.  Electrostatics of DNA–DNA juxtapositions: consequences for type II topoisomerase function , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  H. Chan,et al.  Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action. , 2006, Biophysical journal.

[28]  N. Osheroff,et al.  Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. , 2005, The Journal of biological chemistry.

[29]  J. Berger,et al.  The structural basis for substrate specificity in DNA topoisomerase IV. , 2005, Journal of molecular biology.

[30]  G. Charvin,et al.  Topoisomerase IV bends and overtwists DNA upon binding. , 2005, Biophysical journal.

[31]  G. Charvin,et al.  Tracking topoisomerase activity at the single-molecule level. , 2005, Annual review of biophysics and biomolecular structure.

[32]  G. Wuite,et al.  Analysis of scanning force microscopy images of protein-induced DNA bending using simulations , 2005, Nucleic acids research.

[33]  E. L. Zechiedrich,et al.  DNA disentangling by type-2 topoisomerases. , 2004, Journal of molecular biology.

[34]  J. Roca,et al.  Asymmetric removal of supercoils suggests how topoisomerase II simplifies DNA topology. , 2004, Journal of molecular biology.

[35]  M. Schofield,et al.  DNA bending and unbending by MutS govern mismatch recognition and specificity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Stéphane Fusil,et al.  Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study. , 2003, Biophysical journal.

[37]  Michael D. Stone,et al.  Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  N. Stellwagen,et al.  Analysis of the intrinsic bend in the M13 origin of replication by atomic force microscopy. , 2003, Biophysical journal.

[39]  J. Berger,et al.  Structure of the topoisomerase VI‐B subunit: implications for type II topoisomerase mechanism and evolution , 2003, The EMBO journal.

[40]  K. Klenin,et al.  Computational analysis of the chiral action of type II DNA topoisomerases. , 2002, Journal of molecular biology.

[41]  JAMES C. Wang,et al.  Cellular roles of DNA topoisomerases: a molecular perspective , 2002, Nature Reviews Molecular Cell Biology.

[42]  J. Lebbink,et al.  DNA Topoisomerase VI Generates ATP-dependent Double-strand Breaks with Two-nucleotide Overhangs* , 2001, The Journal of Biological Chemistry.

[43]  N. Cozzarelli,et al.  Mechanism of topology simplification by type II DNA topoisomerases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Magnasco,et al.  Kinetic proofreading can explain the supression of supercoiling of circular DNA molecules by type-II topoisomerases. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  G. Striker,et al.  DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy. , 1999, Journal of molecular biology.

[46]  M. Barbi,et al.  A proposal for a different chi-square function for Poisson distributions , 1999, hep-ex/9911042.

[47]  M. Magnasco,et al.  A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases , 1999, Nature.

[48]  C. Bustamante,et al.  Wrapping of DNA around the E.coli RNA polymerase open promoter complex , 1999, The EMBO journal.

[49]  J. Beechem,et al.  DNA Bending by EcoRI DNA Methyltransferase Accelerates Base Flipping but Compromises Specificity* , 1999, The Journal of Biological Chemistry.

[50]  C. Bustamante,et al.  Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. , 1998, Journal of molecular biology.

[51]  J. Berger Type II DNA topoisomerases. , 1998, Current opinion in structural biology.

[52]  N. Cozzarelli,et al.  Simplification of DNA topology below equilibrium values by type II topoisomerases. , 1997, Science.

[53]  N. Osheroff,et al.  Spontaneous DNA lesions poison human topoisomerase IIalpha and stimulate cleavage proximal to leukemic 11q23 chromosomal breakpoints. , 1997, Biochemistry.

[54]  C. Bustamante,et al.  Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. , 1996, Journal of molecular biology.

[55]  N. Osheroff,et al.  A Yeast Type II Topoisomerase Selected for Resistance to Quinolones , 1995, The Journal of Biological Chemistry.

[56]  C. Bustamante,et al.  DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. , 1994, Science.

[57]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[58]  E. Le Cam,et al.  Conformational analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase. , 1994, Journal of molecular biology.

[59]  C. Bustamante,et al.  Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. , 1993, Science.

[60]  K. Shishido,et al.  Gyrase inhibitors increase the content of knotted DNA species of plasmid pBR322 in Escherichia coli , 1991, Journal of Bacteriology.

[61]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[62]  N. Komiyama,et al.  Increased production of a knotted form of plasmid pBR322 DNA in Escherichia coli DNA topoisomerase mutants. , 1987, Journal of molecular biology.

[63]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[64]  L. S. Nelson,et al.  The Folded Normal Distribution , 1961 .

[65]  J. Tropea,et al.  Expression and purification of soluble His(6)-tagged TEV protease. , 2009, Methods in molecular biology.

[66]  J. Champoux DNA topoisomerases: structure, function, and mechanism. , 2001, Annual review of biochemistry.

[67]  H. Hiasa,et al.  Mechanism of Quinolone Action A DRUG-INDUCED STRUCTURAL PERTURBATION OF THE DNA PRECEDES STRAND CLEAVAGE BY TOPOISOMERASE IV* , 1997 .

[68]  C. Bustamante,et al.  Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. , 1996, Annual review of biophysics and biomolecular structure.