Mesoscale Modeling of a Li-Ion Polymer Cell

Finite element models of a three-dimensional, porous cathode were constructed and analyzed by the COMSOL multiphysics package (version 3.2). Four types of cathode active material particles, arranged in both regular and random arrays, were modeled. Experimental studies of Li/PEO-LiClO 4 /Li 1+x Mn 2 O 4 (where 0 < x < 1) were used to validate simulation results. Two parameters, Li ion diffusivity into Li 1+x Mn 2 O 4 particles, and contact resistance at the interface between cathode particles and the current collector, were obtained by curve-fitting discharge curves of simulation results of regular array models, with Li 1+x Mn 2 O 4 particles (3.6 μm) with experimental results. Diffusivities of Li ions were found to be 4 ×10 -13 , 6 ×10 -13 , 1×10 -12 , and 5 X 10 -12 cm 2 /s for Li 1+x Mn 2 O 4 particles sintered at 800, 600, 500, and 450°C, respectively. Contact resistances were found to be 3.5 Ω cm 2 for Li 1+x Mn 2 O 4 particles prepared at 600 and 800°C, and 10.5 Ω cm 2 for particles prepared at 450 and 500°C. Regular arrays were shown to increase achievable capacity from 5 to 50% of the theoretical capacity, compared with random arrays, at C/10 for samples sintered at 500°C. Smaller particle sizes of active material particles were also shown to be beneficial for high power density applications and for low diffusivity active materials.

[1]  Ann Marie Sastry,et al.  Selection of Conductive Additives in Li-Ion Battery Cathodes A Numerical Study , 2007 .

[2]  Jeff Wolfenstine,et al.  Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition , 2007 .

[3]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[4]  Hongsen Li,et al.  Effect of sintering time on the physical and electrochemical properties of LiFePO4/C composite cathodes , 2006 .

[5]  T. Takamura,et al.  Studies on capacity fading mechanism of graphite anode for Li-ion battery , 2006 .

[6]  K. Amine,et al.  Thermal Stability of the Li ( Ni0.8Co0.15Al0.05 ) O2 Cathode in the Presence of Cell Components , 2006 .

[7]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[8]  P. He,et al.  Electrochemical characteristics of layered LiNi1/3Co1/3Mn1/3O2 and with different synthesis conditions , 2006 .

[9]  Karim Zaghib,et al.  Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries , 2006 .

[10]  K. Fung,et al.  Effect of annealing temperature on electrochemical performance of thin-film LiMn2O4 cathode , 2006 .

[11]  Makiko Kise,et al.  Alternating Current Impedance Behavior and Overcharge Tolerance of Lithium-Ion Batteries Using Positive Temperature Coefficient Cathodes , 2006 .

[12]  D. Guyomard,et al.  Critical Role of Polymeric Binders on the Electronic Transport Properties of Composites Electrode , 2006 .

[13]  Y. Idemoto,et al.  Properties, Crystal Structure, and Performance of o- LiMnO2 as Cathode Material for Li Secondary Batteries , 2006 .

[14]  J. Tu,et al.  Electrochemical study on LiMn2O4 as cathode material for lithium ion batteries , 2006 .

[15]  Jianjun Li,et al.  Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries , 2006 .

[16]  A. Sastry,et al.  Compression of Packed Particulate Systems: Simulations and Experiments in Graphitic Li-ion Anodes , 2006 .

[17]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[18]  Pier Paolo Prosini,et al.  Modeling the Voltage Profile for LiFePO4 , 2005 .

[19]  Donald R. Sadoway,et al.  Electrochemically controlled transport of lithium through ultrathin SiO 2 , 2005 .

[20]  H. Shao,et al.  Physical properties and electrochemical performance of LiMn2O4 cathode materials prepared by a precipitation method , 2005 .

[21]  Z. Yong,et al.  Electrochemical impedance spectra of V2O5 xerogel films with intercalation of lithium ion , 2005 .

[22]  K. Zaghib,et al.  Effect of Carbon Source as Additives in LiFePO4 as Positive Electrode for Lithium-Ion Batteries , 2005 .

[23]  Ganesan Nagasubramanian,et al.  Modeling capacity fade in lithium-ion cells , 2005 .

[24]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[25]  B. Liaw,et al.  Modeling of lithium ion cells: A simple equivalent-circuit model approach , 2004 .

[26]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[27]  A. Sastry,et al.  Particle Compression and Conductivity in Li-Ion Anodes with Graphite Additives , 2004 .

[28]  Ann Marie Sastry,et al.  Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Ann Marie Sastry,et al.  Two-Dimensional vs. Three-Dimensional Clustering and Percolation in Fields of Overlapping Ellipsoids , 2004 .

[30]  Michel Perrier,et al.  Safe Li-ion polymer batteries for HEV applications , 2004 .

[31]  Suleiman Abu-Sharkh,et al.  Rapid test and non-linear model characterisation of solid-state lithium-ion batteries , 2004 .

[32]  Liquan Chen,et al.  First-principles study of Li ion diffusion in LiFePO4 , 2004 .

[33]  M. Perrier,et al.  Nano electronically conductive titanium-spinel as lithium ion storage negative electrode , 2004 .

[34]  G. Zhuang,et al.  Surface Film Formation on LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes Using Attenuated Total Reflection IR Spectroscopy , 2004 .

[35]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[36]  E. Barsoukov,et al.  Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy , 2003 .

[37]  Ann Marie Sastry,et al.  On Modeling Bonds in Fused, Porous Networks: 3D Simulations of Fibrous–Particulate Joints , 2003 .

[38]  A. Sastry,et al.  Analytical approximation of the two-dimensional percolation threshold for fields of overlapping ellipses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Chester G. Motloch,et al.  Mechanisms of impedance rise in high-power, lithium-ion cells☆ , 2002 .

[40]  S. Torquato Random Heterogeneous Materials , 2002 .

[41]  B. Scrosati Lithium Polymer Electrolytes , 2002 .

[42]  Bruce Dunn,et al.  Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries , 2002 .

[43]  Petr Novák,et al.  Modeling of the charge–discharge dynamics of lithium manganese oxide electrodes for lithium-ion batteries , 2001 .

[44]  Jingli Luo,et al.  Study of hydrogen diffusion in a- and -phase hydrides of Mg 2Ni alloy by microelectrode technique , 2001 .

[45]  J. Dahn,et al.  The Effect of Co Substitution for Ni on the Structure and Electrochemical Behavior of T2 and O2 Structure Li2 / 3 [ Co x Ni1 / 3 − x Mn2 / 3 ] O 2 , 2001 .

[46]  Jaephil Cho,et al.  Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material , 2001 .

[47]  K. Kamei,et al.  Nano-tube-like surface structure in graphite particles and its formation mechanism: A role in anodes of lithium-ion secondary batteries , 2000 .

[48]  Venkat R. Subramanian,et al.  Shrinking Core Model for the Discharge of a Metal Hydride Electrode , 2000 .

[49]  K. Zaghib,et al.  Effect of Graphite Particle Size on Irreversible Capacity Loss , 2000 .

[50]  G. Fey,et al.  Kinetic Characterization of the Electrochemical Intercalation of Lithium Ions into Graphite Electrodes , 2000 .

[51]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[52]  Ralph E. White,et al.  Modeling Lithium Intercalation of a Single Spinel Particle under Potentiodynamic Control , 2000 .

[53]  B. Stanmore,et al.  Experimental and theoretical study of oxygen diffusion within packed beds of carbon black , 2000 .

[54]  C. Wan,et al.  Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries , 2000 .

[55]  Myunghwan Kim,et al.  Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives , 1999 .

[56]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[57]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[58]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[59]  M. E. Garcia,et al.  Molecular Dynamics Simulation of V 2 O 5 / Li2SiO3 Interface , 1998 .

[60]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[61]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[62]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation , 1997 .

[63]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[64]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[65]  H. Ploehn,et al.  Analysis of transient hydrogen uptake by metal alloy particles , 1996 .

[66]  Bernard P. Boudreau,et al.  The diffusive tortuosity of fine-grained unlithified sediments , 1996 .

[67]  K. Striebel,et al.  Electrochemical Behavior of LiMn2 O 4 and LiCoO2 Thin Films Produced with Pulsed Laser Deposition , 1996 .

[68]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[69]  K. Abraham,et al.  Preparation and electrochemical characterization of micron-sized spinel LiMn{sub 2}O{sub 4} , 1996 .

[70]  G. Pistoia,et al.  Synthesis of an efficient LiMn2O4 for lithium-ion cells , 1996 .

[71]  M. Ratner,et al.  Polymer electrolytes: The importance of ion-ion interactions in diffusion dominated behavior , 1995 .

[72]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[73]  Yoshiaki Ito,et al.  The structure of Gd2O3 doped Bi2O3 at a low temperature , 1995 .

[74]  Jan N. Reimers,et al.  Can first principles calculations aid in lithium-ion battery design? , 1995 .

[75]  R. M. Ford,et al.  Random walk calculations for bacterial migration in porous media. , 1995, Biophysical journal.

[76]  J. Barker,et al.  Determination of thermodynamic, kinetic and interfacial properties for the Li//LixMn2O4 system by electrochemical techniques , 1994 .

[77]  M. Doyle,et al.  Relaxation Phenomena in Lithium‐Ion‐Insertion Cells , 1994 .

[78]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[79]  J. Schoonman,et al.  Polycrystalline, glassy and thin films of LiMn2O4 , 1993 .

[80]  S. Surampudi,et al.  Electrochemical Impedance Spectroscopy of Lithium‐Titanium Disulfide Rechargeable Cells , 1993 .

[81]  S. Besner,et al.  Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour , 1992 .

[82]  R. J. Neat,et al.  Performance of lithiummanganese oxide spinel electrodes in a lithium polymer electrolyte cell , 1991 .

[83]  G. Tilton,et al.  Geochim. cosmochim. acta , 1989 .

[84]  R. Huggins Solid State Ionics , 1989 .

[85]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[86]  A. H. Thompson,et al.  Electrochemical Potential Spectroscopy: A New Electrochemical Measurement , 1979 .

[87]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[88]  D. Grahame,et al.  Properties of the Electrical Double Layer at a Mercury Surface. II. The Effect of Frequency on the Capacity and Resistance of Ideal Polarized Electrodes1 , 1946 .

[89]  J. A. V. Butler,et al.  Studies in heterogeneous equilibria. Part II.—The kinetic interpretation of the nernst theory of electromotive force , 2022 .