Sequence divergence within transposable element families in the Drosophila melanogaster genome.

The availability of the sequenced Drosophila melanogaster genome provides an opportunity to study sequence variation between copies within transposable element families. In this study,we analyzed the 624 copies of 22 transposable element (TE) families (14 LTR retrotransposons, five non-LTR retrotransposons, and three transposons). LTR and non-LTR retrotransposons possessed far fewer divergent elements than the transposons,suggesting that the difference depends on the transposition mechanism. However,there was not a continuous range of divergence of the copies in each class,which were either very similar to the canonical elements,or very divergent from them. This sequence homogeneity among TE family copies matches the theoretical models of the dynamics of these repeated sequences. The sequenced Drosophila genome thus appears to be composed of a mixture of TEs that are still active and of ancient relics that have degenerated and the distribution of which along the chromosomes results from natural selection. This clearly demonstrates that the TEs are highly active within the genome,suggesting that the genetic variability of the Drosophila genome is still being renewed by the action of TEs.

[1]  C. Biémont,et al.  Codon usage and the origin of P elements. , 2000, Molecular biology and evolution.

[2]  David Sudnow,et al.  Dead on arrival , 1967 .

[3]  D. Womble,et al.  GCG: The Wisconsin Package of sequence analysis programs. , 2000, Methods in molecular biology.

[4]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[5]  Manolo Gouy,et al.  SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny , 1996, Comput. Appl. Biosci..

[6]  C. Biémont,et al.  Distribution of transposable elements in Drosophila species , 2004, Genetica.

[7]  Guy Perrière,et al.  LALNVIEW: a graphical viewer for pairwise sequence alignments , 1996, Comput. Appl. Biosci..

[8]  J. Brookfield Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. , 1991, Genetics.

[9]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[10]  I. K. Jordan,et al.  The Role of Interelement Selection in Saccharomyces cerevisiae Ty Element Evolution , 1999, Journal of Molecular Evolution.

[11]  C. Lanave,et al.  The complete Tirant transposable element in Drosophila melanogaster shows a structural relationship with retrovirus-like retrotransposons. , 2000, Gene.

[12]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[13]  D C Shields,et al.  Evidence that mutation patterns vary among Drosophila transposable elements. , 1989, Journal of molecular biology.

[14]  M. Slatkin Genetic differentiation of transposable elements under mutation and unbiased gene conversion. , 1985, Genetics.

[15]  M. Grandbastien,et al.  The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. , 1998, Molecular biology and evolution.

[16]  D. Petrov,et al.  Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. , 1997, Gene.

[17]  L. Viggiano,et al.  Cloning and characterization of a copy of Tirant transposable element in Drosophila melanogaster. , 1997, Gene.

[18]  C. Ferraz,et al.  Evolution of the Gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. , 2000, Molecular biology and evolution.

[19]  M. G. Kidwell,et al.  Transposable elements and host genome evolution. , 2000, Trends in ecology & evolution.

[20]  Emmanuelle Lerat,et al.  Codon Usage by Transposable Elements and Their Host Genes in Five Species , 2002, Journal of Molecular Evolution.

[21]  M. Grandbastien,et al.  Sequence variability within the tobacco retrotransposon Tnt1 population. , 1995, The EMBO journal.

[22]  N. Bowen,et al.  Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.

[23]  J. Brookfield A model for DNA sequence evolution within transposable element families. , 1986, Genetics.

[24]  S. Beckendorf,et al.  The structure of hobo transposable elements and their insertion sites , 1986, The EMBO journal.

[25]  James A. Shapiro,et al.  Transposable elements as the key to a 21st century view of evolution , 2004, Genetica.

[26]  Manolo Gouy,et al.  Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. , 2002, Genome research.

[27]  N. Takahata,et al.  Paleo-demography of the Drosophila melanogaster subgroup: application of the maximum likelihood method. , 1999, Genes & genetic systems.

[28]  R. Hudson,et al.  On the divergence of members of a transposable element family , 1986, Journal of mathematical biology.

[29]  C. Hoogland,et al.  Transposable element distribution in Drosophila. , 1997, Genetics.

[30]  T. Ohta A model of duplicative transposition and gene conversion for repetitive DNA families. , 1985, Genetics.

[31]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Biémont,et al.  Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster , 1987, Nature.

[33]  I King Jordan,et al.  Transposable elements and the evolution of eukaryotic complexity. , 2002, Current issues in molecular biology.

[34]  W. G. Hill,et al.  The effect of linkage on limits to artificial selection. , 1966, Genetical research.

[35]  B. Charlesworth,et al.  Transposable element distributions in Drosophila. , 1997, Genetics.

[36]  C. Biémont,et al.  Massive changes in genomic locations of P elements in an inbred line ofDrosophila melanogaster , 1990, Naturwissenschaften.

[37]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[38]  L. Zhivotovsky,et al.  Mobile elements and chromosomal evolution in the virilis group of Drosophila. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Poulter,et al.  New BEL-like LTR-retrotransposons in Fugu rubripes, Caenorhabditis elegans, and Drosophila melanogaster. , 2001, Gene.

[40]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[41]  J. McDonald,et al.  Analysis of copia sequence variation within and between Drosophila species. , 1995, Molecular biology and evolution.

[42]  Lilya V. Matyunina,et al.  Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Costas,et al.  Amplification and Phylogenetic Relationships of a Subfamily of blood, a Retrotransposable Element of Drosophila , 2001, Journal of Molecular Evolution.

[44]  I. Boussy,et al.  hobo transposable elements in Drosophila melanogaster and D. simulans. , 1991, Genetical research.

[45]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[46]  I. K. Jordan,et al.  Interelement Selection in the Regulatory Region of the copia Retrotransposon , 1998, Journal of Molecular Evolution.

[47]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[48]  I. K. Jordan,et al.  Evidence for the Role of Recombination in the Regulatory Evolution of Saccharomyces cerevisiae Ty Elements , 1998, Journal of Molecular Evolution.

[49]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[50]  Claude Bazin,et al.  Is the evolution of transposable elements modular? , 2004, Genetica.