Development Of Very-High-Strength and High-Performance Concrete Materials for Improvement of Barriers Against Blast and Projectile Penetration

Abstract : The U.S. Department of Defense is constantly pursuing new technologies to improve the capabilities of protective structures in defeating current and emerging threats thus providing a safer environment in which its soldiers must work and fight. Exploiting innovative uses of cement-based materials, the U. S. Army Engineer Research and Development Center (ERDC) is developing several high-performance concretes to mitigate the effects of blast and ballistic threats from conventional and asymmetric weapons. This paper presents the theory, development, and preliminary laboratory and field experimental results of two distinctly different classes of high-performance concretes. The first material presented in this paper is a very high-strength concrete engineered for low-cost structural armoring applications. Innovative application of particle selection and distribution, advanced fiber selection in multiple magnitudes of scale, and modified curing techniques are being developed to increase the strength and toughness of this high-performance composite beyond current state-of-the-art performance. At the other end of the performance envelope, this paper discusses the development of a material with an innovative combination of mechanical properties that are engineered for mitigation of debris hazards generated by high intensity blast loadings. This material shows great promise for construction applications for barricades and non-load-bearing walls where improvised explosive devices could be employed to inflict human casualties.