Fabricable tile decors

Recent advances in 3D printing have made it easier to manufacture customized objects by ordinary users in an affordable manner, and therefore spurred high demand for more accessible methods for designing and fabricating 3D objects of various shapes and functionalities. In this paper we present a novel approach to model and fabricate surface-like objects composed of connected tiles, which can be used as objects in daily life, such as ornaments, covers, shades or handbags.

[1]  T. Rowan Functional stability analysis of numerical algorithms , 1990 .

[2]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[3]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[4]  Sylvain Lefebvre,et al.  Topology-constrained synthesis of vector patterns , 2014, ACM Trans. Graph..

[5]  Charlie C. L. Wang,et al.  Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures , 2015 .

[6]  Markus H. Gross,et al.  Stenciling: Designing Structurally‐Sound Surfaces with Decorative Patterns , 2016, Comput. Graph. Forum.

[7]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[8]  N. Carr,et al.  PackMerger: A 3D Print Volume Optimizer , 2014, Comput. Graph. Forum.

[9]  Bailin Deng,et al.  Wire mesh design , 2014, ACM Trans. Graph..

[10]  Markus H. Gross,et al.  Example Based Repetitive Structure Synthesis , 2015, SGP '15.

[11]  J. Mitani,et al.  Making papercraft toys from meshes using strip-based approximate unfolding , 2004, SIGGRAPH 2004.

[12]  Yizhou Yu,et al.  Surface Mosaic Synthesis with Irregular Tiles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[13]  D. Cohen-Or,et al.  Dapper , 2015, ACM Trans. Graph..

[14]  Bernhard Thomaszewski,et al.  Designing structurally-sound ornamental curve networks , 2016, ACM Trans. Graph..

[15]  Marcelo Walter,et al.  3D virtual mosaics: Opus Palladium and mixed styles , 2009, The Visual Computer.

[16]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[17]  Olga Sorkine-Hornung,et al.  Designing N‐PolyVector Fields with Complex Polynomials , 2014, Comput. Graph. Forum.

[18]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[19]  Ralph R. Martin,et al.  Surface mosaics , 2006, The Visual Computer.

[20]  Peng Song,et al.  CofiFab , 2016, SIGGRAPH 2016.

[21]  Marcelo Walter,et al.  3D mosaics with variable-sized tiles , 2008, The Visual Computer.

[22]  Keenan Crane,et al.  Beyond developable , 2016, ACM Trans. Graph..

[23]  Li-Yi Wei,et al.  Discrete element textures , 2011, ACM Trans. Graph..

[24]  Jun Wu,et al.  By-example synthesis of structurally sound patterns , 2015, ACM Trans. Graph..

[25]  Adrien Bousseau,et al.  WrapIt: computer-assisted crafting of wire wrapped jewelry , 2015, ACM Trans. Graph..

[26]  Qian Sun,et al.  User controllable anisotropic shape distribution on 3D meshes , 2016, Computational Visual Media.

[27]  Dani Lischinski,et al.  Printed Perforated Lampshades for Continuous Projective Images , 2015, ACM Trans. Graph..

[28]  Takashi Maekawa,et al.  Fabrication of freeform objects by principal strips , 2016, ACM Trans. Graph..

[29]  Sylvain Lefebvre,et al.  Synthesis of filigrees for digital fabrication , 2016, ACM Trans. Graph..

[30]  Brian Wyvill,et al.  Interactive decal compositing with discrete exponential maps , 2006, ACM Trans. Graph..

[31]  Takeo Igarashi,et al.  Computational design of iris folding patterns , 2016, Computational Visual Media.

[32]  Karthik Ramani,et al.  Optimal fitting of strain-controlled flattenable mesh surfaces , 2016 .

[33]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[34]  Wojciech Matusik,et al.  Fab forms , 2015, ACM Trans. Graph..

[35]  Wojciech Matusik,et al.  Chopper: partitioning models into 3D-printable parts , 2012, ACM Trans. Graph..

[36]  Nobuyuki Umetani,et al.  Printone: interactive resonance simulation for free-form print-wind instrument design , 2016, ACM Trans. Graph..

[37]  Olga Sorkine-Hornung,et al.  Spin-it , 2014, ACM Trans. Graph..

[38]  Nobuyuki Umetani,et al.  Meltables: fabrication of complex 3D curves by melting , 2015, SIGGRAPH Asia Technical Briefs.

[39]  Ayellet Tal,et al.  Paper craft models from meshes , 2006, The Visual Computer.

[40]  Johannes Wallner,et al.  Interactive Design of Developable Surfaces , 2016, ACM Trans. Graph..

[41]  Charlie C. L. Wang A least-norm approach to flattenable mesh surface processing , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[42]  Marco Attene,et al.  Shapes In a Box: Disassembling 3D Objects for Efficient Packing and Fabrication , 2015, Comput. Graph. Forum.

[43]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[44]  Wojciech Matusik,et al.  Acoustic voxels , 2016, ACM Trans. Graph..

[45]  Eder Miguel,et al.  Computational design of stable planar-rod structures , 2016, ACM Trans. Graph..

[46]  Leif Kobbelt,et al.  Improved Surface Quality in 3D Printing by Optimizing the Printing Direction , 2016, Comput. Graph. Forum.

[47]  Paolo Cignoni,et al.  Field-aligned mesh joinery , 2014, ACM Trans. Graph..

[48]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[49]  Sylvain Lefebvre,et al.  Texture sprites: texture elements splatted on surfaces , 2005, I3D '05.

[50]  Li-yi Wei Multi-class blue noise sampling , 2010 .