A Free Energy Model for Hysteresis in Ferroelectric Materials

This paper provides a theory for quantifying the hysteresis and constitutive nonlinearities inherent to piezoceramic compounds through a combination of free energy analysis and stochastic homogenization techniques. In the first step of the model development, Helmholtz and Gibbs free energy relations are constructed at the lattice or domain level to quantify the relation between the field and polarization in homogeneous, single crystal compounds which exhibit uniform effective fields. The effects of material nonhomogeneities, polycrystallinity, and variable effective fields are subsequently incorporated through the assumption that certain physical parameters, including the local coercive and effective fields, are randomly distributed and hence manifestations of stochastic density functions associated with the material. Stochastic homogenization in this manner provides low-order macroscopic models with effective parameters that can be correlated with physical properties of the data. This facilitates the identification of parameters for model construction, model updating to accommodate changing operating conditions, and control design utilizing model-based inverse compensators. Attributes of the model, including the guaranteed closure of biased minor loops in quasistatic drive regimes, are illustrated through examples.

[1]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[2]  D. Ter Haar,et al.  Elements of Statistical Mechanics , 1954 .

[3]  S. Seeleckei,et al.  Optimal Control Of Beam Structures By Shape Memory Wires , 1970 .

[4]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[5]  Toshio Mitsui,et al.  An Introduction to the Physics of Ferroelectrics , 1976 .

[6]  S. Lang Real and Functional Analysis , 1983 .

[7]  R. Newnham REVIEW ARTICLE: Electroceramics , 1989 .

[8]  W. Beyer CRC Standard Mathematical Tables and Formulae , 1991 .

[9]  Yoshihiro Ishibashi,et al.  Simulations of Ferroelectric Characteristics Using a One-Dimensional Lattice Model , 1991 .

[10]  C. Rogers,et al.  A Macroscopic Phenomenological Formulation for Coupled Electromechanical Effects in Piezoelectricity , 1993 .

[11]  H. Banks Smart Structures and Materials 1994: Mathematics and Control in Smart Structures , 1994 .

[12]  John E. Miesner,et al.  Piezoelectric/magnetostrictive resonant inchworm motor , 1994, Smart Structures.

[13]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[14]  Daniel Zwillinger,et al.  CRC standard mathematical tables and formulae; 30th edition , 1995 .

[15]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[16]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[17]  H. Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators, Part II: Convergent Approximations , 1997 .

[18]  Harvey Thomas Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .

[19]  Wei Chen,et al.  A Model for Simulating Polarization Switching and AF-F Phase Changes in Ferroelectric Ceramics , 1998 .

[20]  H. F. Tiersten,et al.  An Analytical Description of Slow Hysteresis in Polarized Ferroelectric Ceramic Actuators , 1998 .

[21]  Ralph C. Smith,et al.  A Domain Wall Model for Hysteresis in Piezoelectric Materials , 1999 .

[22]  Murti V. Salapaka,et al.  Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[23]  Stefan Seelecke,et al.  Simulation and control of SMA actuators , 1999, Smart Structures.

[24]  Craig L. Hom,et al.  Domain Wall Theory for Ferroelectric Hysteresis , 1999 .

[25]  W. Cao,et al.  Smart materials and structures. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Lev Truskinovsky,et al.  Mechanics of a discrete chain with bi-stable elements , 2000 .

[27]  Thomas J. Royston,et al.  Modeling the effect of piezoceramic hysteresis in structural vibration control , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[29]  Santiago Hernández,et al.  Computer Aided Optimum Design of Structures V , 2001 .

[30]  Dragan Damjanovic,et al.  Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics , 2001 .

[31]  Stefan Seelecke,et al.  Free energy model for piezoceramic materials , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[32]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[33]  Stefan Seelecke,et al.  Energy formulation for Preisach models , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[34]  Joshua R. Smith,et al.  Model development and inverse compensator design for high speed nanopositioning , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[35]  L. Truskinovsky,et al.  A mechanism of transformational plasticity , 2002 .

[36]  Lev Truskinovsky,et al.  Rate independent hysteresis in a bi-stable chain , 2002 .

[37]  Stefan Seelecke,et al.  Free energy model for hysteresis in magnetostrictive transducers , 2003 .

[38]  Stefan Seelecke,et al.  A unified model for hysteresis in ferroic materials , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[39]  Ralph C. Smith,et al.  Robust control of a magnetostrictive actuator , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[40]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .