PLAs in quantum-dot cellular automata

Research in the fields of physics, chemistry and electronics has demonstrated that quantum-dot cellular automata (QCA) is a viable alternative for nano-scale computing. However, little work on QCA has studied designing implementation-friendly programmable QCA circuits. This paper fills this gap by presenting a novel QCA-based programmable logic array (PLA) structure. In addition to being compact, the proposed PLA structure exploits some unique properties of QCA cells to achieve ease of implementation, programming and defect detection. These features are indispensable to the successful adoption of any nano-scale circuits

[1]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[2]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[3]  Henry Taube,et al.  Mixed valence state based on .mu.-cyanogen-bis(pentaammineruthenium) , 1975 .

[4]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[5]  N. Seeman,et al.  DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface , 2004 .

[6]  John C. Bean,et al.  Growth of quantum fortress structures in Si1−xGex/Si via combinatorial deposition , 2003 .

[7]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[8]  S.-W. Chung,et al.  Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography , 2002, Science.

[9]  C. Lent,et al.  Demonstration of a functional quantum-dot cellular automata cell , 1998 .

[10]  H. T. Kung Why systolic architectures? , 1982, Computer.

[11]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003 .

[12]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[13]  Michael T. Niemier,et al.  Eliminating wire crossings for molecular quantum-dot cellular automata implementation , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[14]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[15]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[16]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[17]  David A. Ritchie,et al.  Realization of quantum-dot cellular automata using semiconductor quantum dots , 2003 .

[18]  M. Lieberman,et al.  Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices , 2004, IEEE Transactions on Nanotechnology.

[19]  Mehdi Baradaran Tahoori,et al.  Design and characterization of an and-or-inverter (AOI) gate for QCA implementation , 2004, GLSVLSI '04.

[20]  Michael T. Niemier,et al.  Exploring and exploiting wire-level pipelining in emerging technologies , 2001, Proceedings 28th Annual International Symposium on Computer Architecture.

[21]  Wenchuang Hu,et al.  High-resolution electron beam lithography and DNA nano-patterning for molecular QCA , 2005, IEEE Transactions on Nanotechnology.

[22]  R. Stanley Williams,et al.  Nanoelectronic architectures , 2005 .

[23]  Jieying Jiao,et al.  Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. , 2003, Journal of the American Chemical Society.

[24]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[25]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[26]  Yasuo Takahashi,et al.  Threshold Voltage of Si Single-Electron Transistor , 2002 .

[27]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[28]  W. Porod,et al.  Quantum-dot cellular automata , 1999 .

[29]  G. Iannaccone,et al.  Thermal behavior of quantum cellular automaton wires , 2000 .

[30]  A. Dzurak,et al.  Demonstration of a silicon-based quantum cellular automata cell , 2006 .

[31]  Tad Hogg,et al.  Defect-tolerant Logic with Nanoscale Crossbar Circuits , 2007, J. Electron. Test..

[32]  A. G. Fowler,et al.  Single-spin readout for buried dopant semiconductor qubits , 2004, quant-ph/0402077.

[33]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[34]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[35]  X.S. Hu,et al.  Using CAD to Shape Experiments in Molecular QCA , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[36]  John H. Reif,et al.  Stepwise DNA self-assemby of fixed-size nanostructures , 2005 .

[37]  Wolfgang Porod,et al.  Clocking structures and power analysis for nanomagnet-based logic devices , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[38]  P. Barbara,et al.  Contemporary Issues in Electron Transfer Research , 1996 .

[39]  Michael T. Niemier,et al.  The "4-diamond circuit" - a minimally complex nano-scale computational building block in QCA , 2004, IEEE Computer Society Annual Symposium on VLSI.

[40]  G. Tóth,et al.  Power gain in a quantum-dot cellular automata latch , 2002 .

[41]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[42]  Derck Schlettwein,et al.  A novel route to molecular self-assembly: self-intermixed monolayer phases. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  Mark Oskin,et al.  An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).

[44]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[45]  Henry Taube,et al.  THE MIXED VALENCE STATE BASED ON MU-CYANOGEN-BIS(PENTAAMMINERUTHENIUM) , 1975 .

[46]  Michael T. Niemier,et al.  Fault Models and Yield Analysis for QCA-Based PLAs , 2007, 2007 International Conference on Field Programmable Logic and Applications.

[47]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[48]  Manuel Galán,et al.  Calculation of rate constants from UV-vis spectroscopic data: an application of the Marcus-Hush model , 1996 .

[49]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[50]  Wolfgang Porod,et al.  Quantum-dot cellular automata , 1999 .

[51]  Peter Kogge,et al.  The effects of a new technology on the design, organization, and architectures of computing systems , 2003 .

[52]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[53]  E. W. Edwards,et al.  Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures , 2005, Science.

[54]  Alexandra Imre,et al.  Experimental study of nanomagnets for magnetic quantum-dot cellular automata (MQCA) logic applications , 2005 .

[55]  Yasuo Takahashi,et al.  Threshold Voltage of Si Single-Electron Transistor , 2003 .

[56]  Yitzhak Tor,et al.  Ru(II) and Os(II) nucleosides and oligonucleotides: synthesis and properties. , 2002, Journal of the American Chemical Society.

[57]  V. Rich Personal communication , 1989, Nature.

[58]  Mo Liu Robustness and power dissipation in quantum-dot cellular automata , 2006 .

[59]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[60]  D. Tougaw,et al.  Implementation of a crossbar network using quantum-dot cellular automata , 2005, IEEE Transactions on Nanotechnology.

[61]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[62]  Michael J. Wilson,et al.  Nanowire-based sublithographic programmable logic arrays , 2004, FPGA '04.