Viscous Hamilton-Jacobi equations in exponential Orlicz hearts

Abstract. We provide a semigroup approach to the viscous Hamilton-Jacobi equation. It turns out that exponential Orlicz hearts are suitable spaces to handle the (quadratic) non-linearity of the Hamiltonian. Based on an abstract extension result for nonlinear semigroups on spaces of continuous functions, we represent the solution of the viscous Hamilton-Jacobi equation as a strongly continuous convex semigroup on an exponential Orlicz heart. As a result, the solution depends continuously on the initial data. We further determine the symmetric Lipschitz set which is invariant under the semigroup. This automatically yields a priori estimates and regularity in Sobolev spaces. In particular, on the domain restricted to the symmetric Lipschitz set, the generator can be explicitly determined and linked with the viscous Hamilton-Jacobi equation.

[1]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[2]  Makiko Nisio On a Non-Linear Semi-Group Attached to Stochastic Optimal Control , 1976 .

[3]  Paul R. Chernoff,et al.  Note on product formulas for operator semigroups , 1968 .

[4]  H. Pham,et al.  BSDEs with diffusion constraint and viscous Hamilton–Jacobi equations with unbounded data , 2015, 1505.06868.

[5]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[6]  A. Davini Existence and uniqueness of solutions to parabolic equations with superlinear Hamiltonians , 2016, Communications in Contemporary Mathematics.

[7]  Philippe Souplet,et al.  Global solutions of inhomogeneous Hamilton-Jacobi equations , 2006 .

[8]  Freddy Delbaen,et al.  Backward SDEs with superquadratic growth , 2009 .

[9]  L. Evans Application of Nonlinear Semigroup Theory to Certain Partial Differential Equations , 1978 .

[10]  Tosio Kato,et al.  Nonlinear semigroups and evolution equations , 1967 .

[11]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[12]  P. Cardaliaguet,et al.  Hölder Continuity to Hamilton-Jacobi Equations with Superquadratic Growth in the Gradient and Unbounded Right-hand Side , 2012 .

[13]  Robert Kersner,et al.  The Cauchy problem for u t = ?u+|? u| q , 2003 .

[14]  D. Giachetti,et al.  Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term , 2006 .

[15]  P. Chernoff Product formulas, nonlinear semigroups, and addition of unbounded operators , 1974 .

[16]  Viorel Barbu,et al.  Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .

[17]  H. Trotter Approximation of semi-groups of operators , 1958 .

[18]  M. Kobylanski Backward stochastic differential equations and partial differential equations with quadratic growth , 2000 .

[19]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[20]  F. Weissler,et al.  The local theory for viscous Hamilton–Jacobi equations in Lebesgue spaces , 2002 .

[21]  Ying Hu,et al.  BSDE with quadratic growth and unbounded terminal value , 2006 .

[22]  Marco Cirant,et al.  Lipschitz regularity for viscous Hamilton-Jacobi equations with L terms , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[23]  B. Gilding,et al.  The Cauchy problem for ut=Δu+|∇u|q, large-time behaviour , 2005 .

[24]  H. Trotter On the product of semi-groups of operators , 1959 .

[25]  Michael Röckner,et al.  Upper Envelopes of Families of Feller Semigroups and Viscosity Solutions to a Class of Nonlinear Cauchy Problems , 2019, SIAM Journal on Control and Optimization.

[26]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[27]  M. Kupper,et al.  A semigroup approach to nonlinear Lévy processes , 2017, 1710.08130.

[28]  S. Armstrong,et al.  Viscosity solutions of general viscous Hamilton–Jacobi equations , 2013, 1310.4566.

[29]  Jonas Blessing,et al.  Nonlinear Semigroups Built on Generating Families and their Lipschitz Sets , 2020, Potential Analysis.