The Darboux transformation of the derivative nonlinear Schrödinger equation

The n-fold Darboux transformation (DT) is a 2\times2 matrix for the Kaup-Newell (KN) system. In this paper,each element of this matrix is expressed by a ratio of $(n+1)\times (n+1)$ determinant and $n\times n$ determinant of eigenfunctions. Using these formulae, the expressions of the $q^{[n]}$ and $r^{[n]}$ in KN system are generated by n-fold DT. Further, under the reduction condition, the rogue wave,rational traveling solution, dark soliton, bright soliton, breather solution, periodic solution of the derivative nonlinear Schr\"odinger(DNLS) equation are given explicitly by different seed solutions. In particular, the rogue wave and rational traveling solution are two kinds of new solutions. The complete classification of these solutions generated by one-fold DT is given in the table on page.

[1]  M. Ruderman,et al.  DNLS equation for large-amplitude solitons propagating in an arbitrary direction in a high-β Hall plasma , 2002, Journal of Plasma Physics.

[2]  Junkichi Satsuma,et al.  Bilinearization of a Generalized Derivative Nonlinear Schrödinger Equation , 1995 .

[3]  Kimiaki Konno,et al.  Spiky Soliton in Circular Polarized Alfvén Wave , 1979 .

[4]  Jingsong He,et al.  Two kinds of rogue waves of the general nonlinear Schrödinger equation with derivative , 2012, 1202.0356.

[5]  Narkis Tzoar,et al.  Self-phase modulation in long-geometry optical waveguides , 1981 .

[6]  R. Meinel,et al.  General N-soliton solution of the AKNS class on arbitrary background , 1984 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Sergio A. Elaskar,et al.  Damping models in the truncated derivative nonlinear Schrödinger equation , 2007 .

[9]  Dan Anderson,et al.  Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides , 1983 .

[10]  H. Steudel,et al.  The hierarchy of multi-soliton solutions of the derivative nonlinear Schrödinger equation , 2003 .

[11]  Chen Zong-yun,et al.  Comment on Revision of Kaup-Newell's Works on IST for DNLS Equation , 2008 .

[12]  Hiroshi Inoue,et al.  Soliton Solutions of the Derivative Nonlinear Schrödinger Equation , 1979 .

[13]  Y. Ichikawa,et al.  SOLITONS, ENVELOPE SOLITONS IN COLLISIONLESS PLASMAS , 1977 .

[14]  T. Hada,et al.  The truncation model of the derivative nonlinear Schrödinger equation , 2009 .

[15]  G. Sánchez-Arriaga Alfven soliton and multisoliton dynamics perturbed by nonlinear Landau damping , 2010 .

[16]  E. Mjølhus,et al.  On the modulational instability of hydromagnetic waves parallel to the magnetic field , 1976, Journal of Plasma Physics.

[17]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[18]  Kiyoshi Sogo,et al.  GAUGE TRANSFORMATIONS IN SOLITON THEORY , 1983 .

[19]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[20]  N. Huang,et al.  The hamiltonian formalism of the DNLS equation with a nonvanished boundary value , 2005, nlin/0507065.

[21]  Hiroshi Matsumoto,et al.  Nonlinear waves and chaos in space plasmas , 1997 .

[22]  Engui Fan,et al.  Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation , 2000 .

[23]  Jingsong He,et al.  Determinant representation of Darboux transformation for the AKNS system , 2006 .

[24]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[25]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[26]  N. Huang,et al.  An N-soliton solution to the DNLS equation based on revised inverse scattering transform , 2007 .

[27]  Hiroshi Inoue,et al.  Exact Solutions of the Derivative Nonlinear Schrödinger Equation under the Nonvanishing Conditions , 1978 .

[28]  Robert Erdélyi,et al.  Generation of short-lived large-amplitude magnetohydrodynamic pulses by dispersive focusing , 2008 .

[29]  Xiang-jun Chen,et al.  Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Kenji Imai,et al.  Generalization of the Kaup-Newell Inverse Scattering Formulation and Darboux Transformation , 1999 .

[31]  V. M. Lashkin,et al.  N-soliton solutions and perturbation theory for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions , 2007, nlin/0701039.

[32]  H. H. Chen,et al.  Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method , 1979 .

[33]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .