Evaluation of the precision ID whole MtDNA genome panel for forensic analyses.

[1]  D. Turnbull,et al.  Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA , 1999, Nature Genetics.

[2]  W. Parson,et al.  Consistent treatment of length variants in the human mtDNA control region: a reappraisal , 2006, International Journal of Legal Medicine.

[3]  A. Achilli,et al.  Italian mitochondrial DNA database: results of a collaborative exercise and proficiency testing , 2008, International Journal of Legal Medicine.

[4]  Walther Parson,et al.  EMPOP--a forensic mtDNA database. , 2007, Forensic science international. Genetics.

[5]  Walther Parson,et al.  A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA. , 2007, Forensic science international. Genetics.

[6]  W. Parson,et al.  Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences , 2009, BMC Genomics.

[7]  W. Parson,et al.  ‘Mitominis’: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples , 2008, International Journal of Legal Medicine.

[8]  Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples. , 2009, Forensic science international. Genetics.

[9]  M. Holland,et al.  Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy , 2011, Croatian medical journal.

[10]  Mark Stoneking,et al.  A new approach for detecting low-level mutations in next-generation sequence data , 2012, Genome Biology.

[11]  M. Holland,et al.  Forensic Mitochondrial DNA Analysis: Current Practice and Future Potential. , 2012, Forensic science review.

[12]  David H. Warshauer,et al.  Single nucleotide polymorphism typing with massively parallel sequencing for human identification , 2013, International Journal of Legal Medicine.

[13]  Tricia A. Thornton-Wells,et al.  Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans , 2013, PLoS genetics.

[14]  W. Parson,et al.  Comparison of morphological and molecular genetic sex-typing on mediaeval human skeletal remains☆ , 2013, Forensic science international. Genetics.

[15]  Walther Parson,et al.  Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆ , 2013, Forensic science international. Genetics.

[16]  B. Llamas,et al.  DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification , 2013, Investigative Genetics.

[17]  M. Allen,et al.  Mitochondrial DNA analysis of Swedish population samples , 2013, International Journal of Legal Medicine.

[18]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[19]  Niels Morling,et al.  Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics. , 2014, Forensic science international. Genetics.

[20]  Bruce Budowle,et al.  High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. , 2014, Forensic science international. Genetics.

[21]  Mitchell M Holland,et al.  Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. , 2014, Forensic science international. Genetics.

[22]  W R Mayr,et al.  DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. , 2014, Forensic science international. Genetics.

[23]  W. Parson,et al.  Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples. , 2015, Forensic science international. Genetics.

[24]  Jana Naue,et al.  Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. , 2015, Mitochondrion.

[25]  B. Budowle,et al.  Whole mitochondrial genome genetic diversity in an Estonian population sample , 2015, International Journal of Legal Medicine.

[26]  Marcelina Borcz,et al.  Heteroplasmic substitutions in the entire mitochondrial genomes of human colon cells detected by ultra-deep 454 sequencing. , 2015, Forensic science international. Genetics.

[27]  H. Erlich,et al.  Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions , 2015, Croatian medical journal.

[28]  W. Parson,et al.  Helena, the hidden beauty: Resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample. , 2015, Forensic science international. Genetics.

[29]  M. Stoneking,et al.  Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations , 2015, Proceedings of the National Academy of Sciences.

[30]  Yu Cao,et al.  Haplotype diversity in mitochondrial genome in a Chinese Han population , 2016, Journal of Human Genetics.

[31]  Jennifer D. Churchill,et al.  Parsing apart the contributors of mitochondrial DNA mixtures with massively parallel sequencing data , 2017 .

[32]  J. Lee,et al.  Entire Mitochondrial DNA Sequencing on Massively Parallel Sequencing for the Korean Population , 2017, Journal of Korean medical science.

[33]  W. Parson,et al.  Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin , 2017, Genes.

[34]  M. Holland,et al.  Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach. , 2018, Forensic science international. Genetics.