A saddle point least squares approach to mixed methods
暂无分享,去创建一个
[1] Ivo Babuška,et al. Lectures on mathematical foundations of the finite element method. , 1972 .
[2] Ricardo H. Nochetto,et al. Optimal relaxation parameter for the Uzawa Method , 2004, Numerische Mathematik.
[3] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[4] T. Manteuffel,et al. First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .
[5] Thomas A. Manteuffel,et al. First-Order System Least-Squares for the Helmholtz Equation , 1999, SIAM J. Sci. Comput..
[6] Thomas A. Manteuffel,et al. First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .
[7] Jinchao Xu,et al. Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains , 2003, J. Num. Math..
[8] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[9] R. Verfürth. A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes problem , 1984 .
[10] Thomas A. Manteuffel,et al. First-Order System Least Squares for the Stokes and Linear Elasticity Equations: Further Results , 2000, SIAM J. Sci. Comput..
[11] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[12] C. Bacuta. Schur complements on Hilbert spaces and saddle point systems , 2009 .
[13] Yixin Diao,et al. First‐Order Systems , 2004 .
[14] Leszek Demkowicz,et al. A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .
[15] Lu Shu,et al. Residual reduction algorithms for nonsymmetric saddle point problems , 2011, J. Comput. Appl. Math..
[16] Jinchao Xu,et al. Regularity estimates for elliptic boundary value problems in Besov spaces , 2003, Math. Comput..
[17] Thomas A. Manteuffel,et al. First-Order System Least Squares For Linear Elasticity: Numerical Results , 1999, SIAM J. Sci. Comput..
[18] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .
[19] A. Aziz. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .
[20] Pavel B. Bochev,et al. Mathematical Foundations of Least-Squares Finite Element Methods , 2009 .
[21] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[22] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[23] Wolfgang Dahmen,et al. Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..
[24] Joseph E. Pasciak,et al. A new approximation technique for div-curl systems , 2003, Math. Comput..
[25] Katja Bachmeier,et al. Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .
[26] Tosio Kato. Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .
[27] Constantin Bacuta,et al. Cascadic multilevel algorithms for symmetric saddle point systems , 2013, Comput. Math. Appl..
[28] Pavel B. Bochev,et al. Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.
[29] Leszek Demkowicz,et al. A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .
[30] Michael Vogelius,et al. Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .
[31] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[32] Pavel B. Bochev,et al. Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier--Stokes Equations: Part I , 1998 .
[33] Jay Gopalakrishnan. Five lectures on DPG methods , 2013 .
[34] Thomas A. Manteuffel,et al. FOSLL∗ Method for the Eddy Current Problem with Three-Dimensional Edge Singularities , 2007, SIAM J. Numer. Anal..
[35] Lauri Kurkela. Numerical solutions of saddle point problems , 2017 .
[36] Leszek F. Demkowicz,et al. A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..
[37] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[38] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[39] Thomas A. Manteuffel,et al. First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..
[40] Ludmil T. Zikatanov,et al. Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.