A saddle point least squares approach to mixed methods

We investigate new PDE discretization approaches for solving variational formulations with different types of trial and test spaces. The general mixed formulation we consider assumes a stability LBB condition and a data compatibility condition at the continuous level. We expand on the Bramble-Pasciak's least square formulation for solving such problems by providing new ways to choose approximation spaces and new iterative processes to solve the discrete formulations. Our proposed method has the advantage that a discrete inf - sup condition is automatically satisfied by natural choices of test spaces (first) and corresponding trial spaces (second). In addition, for the proposed iterative solver, a nodal basis for the trial space is not required. Applications of the new approach include discretization of first order systems of PDEs, such as div - curl systems and time-harmonic Maxwell equations.

[1]  Ivo Babuška,et al.  Lectures on mathematical foundations of the finite element method. , 1972 .

[2]  Ricardo H. Nochetto,et al.  Optimal relaxation parameter for the Uzawa Method , 2004, Numerische Mathematik.

[3]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[4]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[5]  Thomas A. Manteuffel,et al.  First-Order System Least-Squares for the Helmholtz Equation , 1999, SIAM J. Sci. Comput..

[6]  Thomas A. Manteuffel,et al.  First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .

[7]  Jinchao Xu,et al.  Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains , 2003, J. Num. Math..

[8]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[9]  R. Verfürth A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes problem , 1984 .

[10]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for the Stokes and Linear Elasticity Equations: Further Results , 2000, SIAM J. Sci. Comput..

[11]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[12]  C. Bacuta Schur complements on Hilbert spaces and saddle point systems , 2009 .

[13]  Yixin Diao,et al.  First‐Order Systems , 2004 .

[14]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[15]  Lu Shu,et al.  Residual reduction algorithms for nonsymmetric saddle point problems , 2011, J. Comput. Appl. Math..

[16]  Jinchao Xu,et al.  Regularity estimates for elliptic boundary value problems in Besov spaces , 2003, Math. Comput..

[17]  Thomas A. Manteuffel,et al.  First-Order System Least Squares For Linear Elasticity: Numerical Results , 1999, SIAM J. Sci. Comput..

[18]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[19]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[20]  Pavel B. Bochev,et al.  Mathematical Foundations of Least-Squares Finite Element Methods , 2009 .

[21]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[22]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[23]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[24]  Joseph E. Pasciak,et al.  A new approximation technique for div-curl systems , 2003, Math. Comput..

[25]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[26]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[27]  Constantin Bacuta,et al.  Cascadic multilevel algorithms for symmetric saddle point systems , 2013, Comput. Math. Appl..

[28]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[29]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[30]  Michael Vogelius,et al.  Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .

[31]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[32]  Pavel B. Bochev,et al.  Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier--Stokes Equations: Part I , 1998 .

[33]  Jay Gopalakrishnan Five lectures on DPG methods , 2013 .

[34]  Thomas A. Manteuffel,et al.  FOSLL∗ Method for the Eddy Current Problem with Three-Dimensional Edge Singularities , 2007, SIAM J. Numer. Anal..

[35]  Lauri Kurkela Numerical solutions of saddle point problems , 2017 .

[36]  Leszek F. Demkowicz,et al.  A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..

[37]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[38]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[39]  Thomas A. Manteuffel,et al.  First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..

[40]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.