Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media

In this paper we will review the possibilities of liquid phase epitaxy (LPE) as a versatile technique for the development of new miniature optical components in single crystal dielectric media. These LPE layers can be used in active waveguide configuration as laser or amplifier sources or in transverse configuration as saturable absorber deposited on an active layer. So in the first part of this paper, we will present the LPE process by describing the growth conditions of rare earths doped YAG layers and by discussing the properties obtained in laser planar waveguides. In a second part, we will discuss some other applications, as amplifiers or saturable absorbers, using LPE layers. In the third and last part, we will present the interest of LPE for other materials, used as laser waveguides.

[1]  M. Karr,et al.  Novel garnet then film optical waveguides , 1973 .

[2]  S. Field,et al.  Ion-implanted Nd:MgO:LiNbO(3) planar waveguide laser. , 1991, Optics letters.

[3]  W. Bonner,et al.  Laser oscillation from Ho3+ and Nd3+ ions in epitaxially grown thin aluminum garnet films , 1973 .

[4]  W. Bonner Epitaxial growth of garnets for thin film lasers , 1974 .

[5]  D. Gualtieri Liquid phase epitaxial growth of Y3(Al, Sc)2Al3O12 on (111)-oriented Y3Al5O12 substrates , 1987 .

[6]  A. Yamada,et al.  Liquid phase epitaxial growth of LiNbO3 thin film using Li2O-B2O3 flux system , 1993 .

[7]  D. Hanna,et al.  A diode-pumped, high gain, planar waveguide, Nd:Y3Al5O12 amplifier , 1997 .

[8]  R. K. Watts,et al.  New intermediate gain laser material: Y3(Al1−xGax)5O12 : Nd , 1974 .

[9]  P. Rogin,et al.  Liquid phase epitaxy of LiYF4 , 1997 .

[10]  Masaki Saitoh,et al.  LiNbO3 thin‐film optical waveguide grown by liquid phase epitaxy and its application to second‐harmonic generation , 1991 .

[11]  N. Sugimoto,et al.  Room‐temperature operation of an Yb‐doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength , 1996 .

[12]  M. Minakata,et al.  Growth of high crystalline quality LiNbO3 thin films by a new liquid phase epitaxial technique from a solid-liquid coexisting melt , 1995 .

[13]  L. Fulbert,et al.  Microchip Lasers and Micro-Optics Technologies , 1996 .

[14]  Isabelle Chartier,et al.  Growth by LPE of Nd: YAG single crystal layers for waveguide laser applications , 1993 .

[15]  Anne C. Tropper,et al.  An efficient, diode-pumped, 2 μm Tm:YAG waveguide laser , 1997 .

[16]  S. Field,et al.  Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide. , 1992, Optics letters.

[17]  E. Lallier,et al.  Nd:MgO:LiNbO(3) waveguide laser and amplifier. , 1990, Optics letters.

[18]  P. K. Tien,et al.  Optical waveguides of single‐crystal garnet films , 1972 .

[19]  J. Robertson Liquid phase epitaxy of garnets , 1978 .

[20]  D. Hanna,et al.  Low threshold quasi‐three‐level 946 nm laser operation of an epitaxially grown Nd:Y3Al5O12 waveguide , 1993 .

[21]  P. Thony,et al.  A low threshold, room temperature 1.64 μm Yb:Er:Y3Al5O12 waveguide laser , 1994 .

[22]  Martin M. Fejer,et al.  Quasi-phasematched optical parametric oscillators using bulk periodically poled LiNbO3 , 1995, Photonics West.

[23]  M. Minakata,et al.  Growth-temperature dependence of the LiNb ratio in LPE-grown LiNbO3 films estimated by second-harmonic generation , 1996 .

[24]  W. Bonner,et al.  Coherent emission from Ho3+ ions in epitaxially grown thin aluminum garnet films , 1972 .

[25]  N. Sugimoto,et al.  A ytterbium‐ and neodymium‐co‐doped yttrium aluminum garnet–buried channel waveguide laser pumped at 0.81 μm , 1995 .

[26]  Hans O. B. Dammann,et al.  Yttrium iron garnet single‐mode buried channel waveguides for waveguide isolators , 1988 .

[27]  Anne C. Tropper,et al.  A side-pumped Nd :YAG epitaxial waveguide laser , 1992 .

[28]  T. Fan,et al.  Aperture guiding in quasi-three-level lasers. , 1994, Optics letters.