Iterative solvers within sequences of large linear systems in non‐linear structural mechanics

This article treats the computation of discretized constitutive models of evolutionary-type (like models of viscoelasticity, plasticity, and viscoplasticity) with quasi-static finite elements using diagonally implicit Runge-Kutta methods (DIRK) combined with the Multilevel-Newton algorithm (MLNA). The main emphasis is on promoting iterative methods, as opposed to the more traditional direct methods, for solving the non-symmetric systems which occur within the DIRK/MLNA. It is shown that iterative solution of the arising sequences of linear systems can be substantially accelerated by various techniques that aim at sharing part of the computational effort throughout the sequence. In this way iterative solution becomes attractive at clearly lower dimensions than the dimensions where direct solvers start to fail for memory reasons. The applications are related to small strain viscoplasticity of a smooth constitutive model for plastics and a finite strain plasticity model with non-linear kinematic hardening developed for metals.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[3]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[4]  Joachim Schöberl,et al.  Robust Multigrid Preconditioning for Parameter-Dependent Problems I: The Stokes-Type Case , 1998 .

[5]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[6]  Thierry Coupez,et al.  Toward large scale F.E. computation of hot forging process using iterative solvers, parallel computation and multigrid algorithms , 2001 .

[7]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  J. A. Stricklin,et al.  Evaluation of Solution Procedures for Material and/or Geometrically Nonlinear Structural Analysis , 1973 .

[10]  Wolfgang Ehlers,et al.  Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics , 2005 .

[11]  Stefan Hartmann,et al.  On the numerical treatment of finite deformations in elastoviscoplasticity , 1997 .

[12]  T. Hughes,et al.  Iterative finite element solutions in nonlinear solid mechanics , 1998 .

[13]  Peter Fritzen Numerische Behandlung nichtlinearer Probleme der Elastizitäts- und Plastizitätstheorie , 1997 .

[14]  Deepak V. Kulkarni,et al.  A Newton-Schur alternative to the consistent tangent approach in computational plasticity , 2007 .

[15]  Martin Arnold,et al.  On plastic incompressibility within time-adaptive finite elements combined with projection techniques , 2008 .

[16]  Christian Wieners,et al.  Comparison of models for finite plasticity: A numerical study , 2003 .

[18]  Stefan Hartmann,et al.  Remarks on the interpretation of current non‐linear finite element analyses as differential–algebraic equations , 2001, International Journal for Numerical Methods in Engineering.

[19]  Charles E. Augarde,et al.  An element-based displacement preconditioner for linear elasticity problems , 2006 .

[20]  Bernd Simeon,et al.  Runge---Kutta methods in elastoplasticity , 2002 .

[21]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[22]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[23]  Philipp Birken,et al.  Preconditioner updates applied to CFD model problems , 2008 .

[24]  Charles E. Augarde,et al.  Element‐based preconditioners for elasto‐plastic problems in geotechnical engineering , 2007 .

[25]  Taylan Altan,et al.  Issues in convergence improvement for non‐linear finite element programs , 1997 .

[26]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[27]  C. Kelley,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1998 .

[28]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[29]  S. Hartmann,et al.  High-order time integration applied to metal powder plasticity , 2008 .

[30]  Wolfgang Ehlers,et al.  Parallel 3-d simulations for porous media models in soil mechanics , 2002 .

[31]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[32]  S. Hartmann A Thermomechanically Consistent Constitutive Model for Polyoxymethylene , 2006 .

[33]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[34]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[35]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[36]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[37]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[38]  Gérard Meurant,et al.  On the Incomplete Cholesky Decomposition of a Class of Perturbed Matrices , 2001, SIAM J. Sci. Comput..

[39]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[40]  Stefan Hartmann,et al.  A remark on the application of the Newton-Raphson method in non-linear finite element analysis , 2005 .

[41]  Robert Beauwens,et al.  HIGH-PERFORMANCE PCG SOLVERS FOR FEM STRUCTURAL ANALYSIS , 1996 .

[42]  Wolfgang Fichtner,et al.  Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .

[43]  Timo Meinders,et al.  Efficient implicit finite element analysis of sheet forming processes , 2003 .

[44]  Ch. Tsakmakis,et al.  A comparative study of kinematic hardening rules at finite deformations , 2004 .

[45]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[46]  Miroslav Tuma,et al.  Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems , 2007, SIAM J. Sci. Comput..

[47]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[48]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .

[49]  S. Hartmann Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential–algebraic equations , 2002 .

[50]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[51]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[52]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[53]  Alexander Lion,et al.  Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models , 2000 .

[54]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[55]  Rolf Mahnken,et al.  A Newton-Multigrid algrithm for elasto-plastic/viscoplastic problems , 1995 .

[56]  M. Crisfield,et al.  Finite Elements and Solution Procedures for Structural Analysis , 1986 .

[57]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[58]  Keith Miller Nonlinear Krylov and moving nodes in the method of lines , 2005 .

[59]  A. Sangiovanni-Vincentelli,et al.  A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain , 1979 .

[60]  Andreas Meister,et al.  Numerik linearer Gleichungssysteme , 1999 .

[61]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[62]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[63]  Jan Verwer,et al.  Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines , 1985 .