A dynamic framework based on local Zernike moment and motion history image for facial expression recognition

A dynamic descriptor facilitates robust recognition of facial expressions in video sequences. The current two main approaches to the recognition are basic emotion recognition and recognition based on facial action coding system (FACS) action units. In this paper we focus on basic emotion recognition and propose a spatio-temporal feature based on local Zernike moment in the spatial domain using motion change frequency. We also design a dynamic feature comprising motion history image and entropy. To recognise a facial expression, a weighting strategy based on the latter feature and sub-division of the image frame is applied to the former to enhance the dynamic information of facial expression, and followed by the application of the classical support vector machine. Experiments on the CK+ and MMI datasets using leave-one-out cross validation scheme demonstrate that the integrated framework achieves a better performance than using individual descriptor separately. Compared with six state-of-arts methods, the proposed framework demonstrates a superior performance. HighlightsProposes a facial expression recognition framework that uses dynamic information.Introduces QLZM_MCF to capture dynamic information in temporal domain.Introduces enMHI_OF to utlise motion speed and spatial information.Proposes a weighting strategy on a grid for high recognition rate.

[1]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[2]  L. Rothkrantz,et al.  Toward an affect-sensitive multimodal human-computer interaction , 2003, Proc. IEEE.

[3]  Tamás D. Gedeon,et al.  Emotion Recognition In The Wild Challenge 2014: Baseline, Data and Protocol , 2014, ICMI.

[4]  Tomaso A. Poggio,et al.  Face recognition: component-based versus global approaches , 2003, Comput. Vis. Image Underst..

[5]  Richard Bowden,et al.  Local binary patterns for multi-view facial expression recognition , 2011 .

[6]  Min Chen,et al.  Facial expression recognition in dynamic sequences: An integrated approach , 2014, Pattern Recognit..

[7]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[8]  Nicu Sebe,et al.  Learning Bayesian network classifiers for facial expression recognition both labeled and unlabeled data , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Maja Pantic,et al.  Web-based database for facial expression analysis , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[11]  R. Balian Entropy, a Protean Concept , 2004 .

[12]  Dmitry Chetverikov,et al.  A Brief Survey of Dynamic Texture Description and Recognition , 2005, CORES.

[13]  Claudio A. Perez,et al.  Fusion of local normalization and Gabor entropy weighted features for face identification , 2014, Pattern Recognit..

[14]  Pramodita Sharma 2012 , 2013, Les 25 ans de l’OMC: Une rétrospective en photos.

[15]  Tamás D. Gedeon,et al.  Collecting Large, Richly Annotated Facial-Expression Databases from Movies , 2012, IEEE MultiMedia.

[16]  P. Ekman,et al.  Constants across cultures in the face and emotion. , 1971, Journal of personality and social psychology.

[17]  Andrea Cavallaro,et al.  Local Zernike Moment Representation for Facial Affect Recognition , 2013, BMVC.

[18]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[19]  Anil K. Jain,et al.  Handbook of Face Recognition, 2nd Edition , 2011 .

[20]  Alireza Khotanzad,et al.  Rotation invariant image recognition using features selected via a systematic method , 1990, Pattern Recognit..

[21]  Evangelos Sariyanidi,et al.  Local Zernike Moments: A new representation for face recognition , 2012, 2012 19th IEEE International Conference on Image Processing.

[22]  Maja Pantic,et al.  Local Evidence Aggregation for Regression-Based Facial Point Detection , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Maja Pantic,et al.  Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Tardi Tjahjadi,et al.  A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences , 2015, Pattern Recognit..

[26]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Zhengyou Zhang,et al.  Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[28]  Maja Pantic,et al.  Facial action recognition for facial expression analysis from static face images , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  Ammad Ali,et al.  Face Recognition with Local Binary Patterns , 2012 .

[30]  Mann Oo. Hay Emotion recognition in human-computer interaction , 2012 .

[31]  C. Singh,et al.  Face recognition using Zernike and complex Zernike moment features , 2011, Pattern Recognition and Image Analysis.

[32]  M. Teague Image analysis via the general theory of moments , 1980 .

[33]  Tieniu Tan,et al.  Semantic Pixel Sets Based Local Binary Patterns for Face Recognition , 2012, ACCV.

[34]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[35]  Tetsunori Kobayashi,et al.  A conversational robot utilizing facial and body expressions , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[36]  Atsushi Ono Face recognition with Zernike moments , 2003, Systems and Computers in Japan.

[37]  Bernd Girod,et al.  Model-based face tracking for view-independent facial expression recognition , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[38]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[40]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[42]  Du-Ming Tsai,et al.  Optical flow-motion history image (OF-MHI) for action recognition , 2015, Signal Image Video Process..

[43]  Maja Pantic,et al.  A Dynamic Texture-Based Approach to Recognition of Facial Actions and Their Temporal Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  M. Taner Eskil,et al.  Facial expression recognition based on anatomy , 2014, Comput. Vis. Image Underst..

[45]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.