Three dimensional printing of components and functional devices for energy and environmental applications

Three dimensional printing technologies represent a revolution in the manufacturing sector because of their unique capabilities for increasing shape complexity while reducing waste material, capital cost and design for manufacturing. However, the application of 3D printing technologies for the fabrication of functional components or devices is still an almost unexplored field due to their elevated complexity from the materials and functional points of view. This paper focuses on reviewing previous studies devoted to developing 3D printing technologies for the fabrication of functional parts and devices for energy and environmental applications. The use of 3D printing technologies in these sectors is of special interest since the related devices usually involve expensive advanced materials such as ceramics or composites, which present strong limitations in shape and functionality when processed with classical manufacturing methods. Recent advances regarding the implementation of 3D printing for energy and environmental applications will bring competitive advantages in terms of performance, product flexibility and cost, which will drive a revolution in this sector.

[1]  Jeffrey C. Grossman,et al.  Solar energy generation in three dimensions , 2011, 1112.3266.

[2]  W. Surdoval,et al.  The Solid State Energy Conversion Alliance (SECA) - A U. S. Department of Energy Initiative to Promote the Development of Mass Customized Solid Oxide Fuel Cells for Low-Cost Power , 2001 .

[3]  Woo Y. Lee,et al.  Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide , 2011 .

[4]  L. Froyen,et al.  Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting , 2004 .

[5]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[6]  Yuhai Hu,et al.  Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies , 2014 .

[7]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[8]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[9]  Rajan Jose,et al.  Progress, challenges and perspectives in flexible perovskite solar cells , 2016 .

[10]  Juan Carlos Ruiz-Morales,et al.  Infrared-light induced curing of photosensitive resins through photon up-conversion for novel cost-effective luminescent 3D-printing technology , 2016 .

[11]  John A Rogers,et al.  Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics , 2015, Nature Communications.

[12]  David C. Dunand,et al.  Metallic Architectures from 3D‐Printed Powder‐Based Liquid Inks , 2015 .

[13]  W.Y. Lee,et al.  Inkjet-printed graphene for flexible micro-supercapacitors , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[14]  W.G.J.H.M. van Sark,et al.  Upconverter solar cells: materials and applications , 2011 .

[15]  J. Grossman,et al.  Three-dimensional photovoltaics , 2010 .

[16]  M. Trunec,et al.  Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks , 2012 .

[17]  Piotr Tomczyk,et al.  Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology , 2013 .

[18]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[19]  Denis Evseenko,et al.  TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells , 2015, Journal of Biological Engineering.

[20]  John T. S. Irvine,et al.  Switching on electrocatalytic activity in solid oxide cells , 2016, Nature.

[21]  P. Ajayan,et al.  Building energy storage device on a single nanowire. , 2011, Nano letters.

[22]  Bartek A. Glowacki,et al.  Inkjet printing of gadolinium-doped ceria electrolyte on NiO-YSZ substrates for solid oxide fuel cell applications , 2011 .

[23]  Qian Sun,et al.  Printing nanostructured carbon for energy storage and conversion applications , 2015 .

[24]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[25]  F. Dautzenberg,et al.  Process intensification using multifunctional reactors , 2001 .

[26]  Thomas L. Reitz,et al.  Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy , 2013 .

[27]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[28]  Zongping Shao,et al.  Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance , 2013 .

[29]  Michael C. Tucker,et al.  Progress in metal-supported solid oxide fuel cells: A review , 2010 .

[30]  Soojin Park,et al.  Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. , 2015, Nano letters.

[31]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[32]  Jan Christoph Goldschmidt,et al.  Enhanced up-conversion for photovoltaics via concentrating integrated optics. , 2014, Optics express.

[33]  N. Sammes,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[34]  J. Azuaje,et al.  3D printing of a heterogeneous copper-based catalyst , 2016 .

[35]  Thomas L. Reitz,et al.  Ink‐Jet Printing: A Versatile Method for Multilayer Solid Oxide Fuel Cells Fabrication , 2009 .

[36]  Stephen Lawes,et al.  Inkjet Printed Thin Film Electrodes for Lithium-Ion Batteries , 2015 .

[37]  Juan Carlos Ruiz-Morales,et al.  Engineering of materials for solid oxide fuel cells and other energy and environmental applications , 2010 .

[38]  Albert Tarancón,et al.  Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature , 2009 .

[39]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[40]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[41]  Yet-Ming Chiang,et al.  Spatially Resolved Modeling of Microstructurally Complex Battery Architectures , 2007 .

[42]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[43]  R. Schropp,et al.  3D-printed concentrator arrays for external light trapping on thin film solar cells , 2015 .

[44]  M. Walter,et al.  Reliability and Properties of Ground Y-TZP-Zirconia Ceramics , 2002, Journal of dental research.

[45]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[46]  Bryce S. Richards,et al.  Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics , 2015 .

[47]  Joong Tark Han,et al.  3D Printing of Reduced Graphene Oxide Nanowires , 2015, Advanced materials.

[48]  Freek Kapteijn,et al.  Monolithic reactors in catalysis: excellent control , 2013 .

[49]  Toshiaki Yamaguchi,et al.  Development of a Dense Electrolyte Thin Film by the Ink‐Jet Printing Technique for a Porous LSM Substrate , 2007 .

[50]  Juan Carlos Ruiz-Morales,et al.  Novel up-conversion luminescent rare-earth- doped organic resins for cost-effective applications in 3D photonic devices† , 2014 .

[51]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[52]  Paolo Colombo,et al.  Cellular Ceramics: Structure, Manufacturing, Properties and Applications , 2005 .

[53]  D. Therriault,et al.  Three-dimensional printing of freeform helical microstructures: a review. , 2014, Nanoscale.

[54]  Marc Madou,et al.  Photoresist‐Derived Carbon for Microelectromechanical Systems and Electrochemical Applications , 2000 .

[55]  J. Manyika,et al.  Disruptive technologies: Advances that will transform life, business, and the global economy , 2013 .

[56]  Yi Cui,et al.  Transparent lithium-ion batteries , 2011, Proceedings of the National Academy of Sciences.

[57]  Martine Dubé,et al.  Three‐Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications , 2016, Advanced materials.

[58]  Michael J. Hoffmann,et al.  Development of a roadmap for advanced ceramics: 2010–2025 , 2009 .

[59]  Xingjiu Huang,et al.  Hydrothermal Fabrication of Three‐Dimensional Secondary Battery Anodes , 2014, Advanced materials.

[60]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[61]  S. Mullens,et al.  CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith , 2017 .

[62]  Ludovic Escoubas,et al.  Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells , 2011 .

[63]  Wuzong Zhou,et al.  Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation , 2006, Nature.

[64]  Benjamin M Wu,et al.  Recent advances in 3D printing of biomaterials , 2015, Journal of Biological Engineering.

[65]  Abigail E. Miller,et al.  The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites , 2016, Science and technology of advanced materials.

[66]  Michael Rottmayer,et al.  Aerosol Jet Printing and Microstructure of SOFC Electrolyte and Cathode Layers , 2011 .

[67]  Peter Greil,et al.  Additive Manufacturing of Ceramic‐Based Materials , 2014 .

[68]  J. Cesarano,et al.  Direct Ink Writing of Three‐Dimensional Ceramic Structures , 2006 .

[69]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[70]  R. Tomov,et al.  Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells , 2010 .

[71]  S. Singhal Solid oxide fuel cells for stationary, mobile, and military applications , 2002 .

[72]  John A Rogers,et al.  Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries , 2015, Proceedings of the National Academy of Sciences.

[73]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[74]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[75]  Woo Y. Lee,et al.  Inkjet-Printed Flexible Graphene-Based Supercapacitor , 2014 .

[76]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[77]  Alexandra M. Golobic,et al.  Highly compressible 3D periodic graphene aerogel microlattices , 2015, Nature Communications.

[78]  Ronn Andriessen,et al.  Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells , 2012 .

[79]  G. A. Blab,et al.  3D‐printed external light trap for solar cells , 2015, Progress in photovoltaics.

[80]  Hiroyuki Shimada,et al.  Electrochemical Behaviors of Nickel/Yttria-Stabilized Zirconia Anodes with Distribution Controlled Yttrium-Doped Barium Zirconate by Ink-jet Technique , 2012 .

[81]  Greg A. Whyatt,et al.  Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems , 2013 .

[82]  Daniel Feuermann,et al.  Photovoltaic performance enhancement by external recycling of photon emission , 2013 .

[83]  J. Knox,et al.  3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments. , 2016, ACS applied materials & interfaces.

[84]  M. J. Edirisinghe,et al.  Solid freeform fabrication of ceramics , 2003 .

[85]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[86]  Yuan Lin,et al.  3D-printing Ag-line of front-electrodes with optimized size and interface to enhance performance of Si solar cells , 2016 .

[87]  Koichi Kikuta,et al.  Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs , 2010 .

[88]  Michael Rottmayer,et al.  Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells , 2008 .

[89]  Yi Cui,et al.  Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries , 2015, Nature Communications.

[90]  J. Lewis,et al.  Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications , 2009, Proceedings of the National Academy of Sciences.

[91]  S. Hollister Porous scaffold design for tissue engineering , 2005, Nature materials.

[92]  Haidong Wu,et al.  Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing , 2017 .

[93]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[94]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[95]  Moses O. Tadé,et al.  Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing , 2015 .

[96]  Benji Maruyama,et al.  Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes , 2016 .

[97]  Chee Kai Chua,et al.  Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors , 2015 .

[98]  Ke Sun Fabrication and demonstration of high energy density lithium ion microbatteries , 2015 .

[99]  Kenneth J.A. Brookes 3D printing materials in Maastricht , 2015 .

[100]  Philip J. Kitson,et al.  Integrated 3D-printed reactionware for chemical synthesis and analysis. , 2012, Nature chemistry.

[101]  Thierry Chartier,et al.  Stereolithography for manufacturing ceramic parts , 2000 .

[102]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[103]  Johan Hjelm,et al.  Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells , 2015 .

[104]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[105]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[106]  Amir Hosein Sakhaei,et al.  Multimaterial 4D Printing with Tailorable Shape Memory Polymers , 2016, Scientific Reports.

[107]  John F. Federici,et al.  Fabrication of rechargeable lithium ion batteries using water-based inkjet printed cathodes , 2015 .

[108]  Raúl Rodríguez Rodríguez,et al.  Modelo de trasvase indirecto de opciones de fabricación entre organizaciones: Una aplicación a la industria cerámica , 2014 .

[109]  Bartek A. Glowacki,et al.  Optimisation of CGO suspensions for inkjet-printed SOFC electrolytes , 2012 .

[110]  Kiho Bae,et al.  Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer , 2016 .

[111]  John T. S. Irvine,et al.  Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes , 2013 .

[112]  Eric B Duoss,et al.  Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. , 2010, Chemical communications.

[113]  Mogens Bjerg Mogensen,et al.  Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers , 2016, Nature Energy.

[114]  Frans Snijkers,et al.  Catalyst design with porous functional structures , 2011 .

[115]  Mark A. Ganter,et al.  A review of process development steps for new material systems in three dimensional printing (3DP) , 2008 .

[116]  Brett Paull,et al.  Recent developments in 3D printable composite materials , 2016 .

[117]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[118]  Daniel A. Steingart,et al.  A super ink jet printed zinc–silver 3D microbattery , 2009 .

[119]  Leone Spiccia,et al.  Dominating Energy Losses in NiO p‐Type Dye‐Sensitized Solar Cells , 2015 .

[120]  Zhiyu Jiang,et al.  A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries , 2006 .

[121]  Stephen Beirne,et al.  Three dimensional (3D) printed electrodes for interdigitated supercapacitors , 2014 .

[122]  Hany Hassanin,et al.  Fabrication of ceramic and ceramic composite microcomponents using soft lithography , 2011 .

[123]  Bartek A. Glowacki,et al.  Vacuum-sintered stainless steel porous supports for inkjet printing of functional SOFC coatings , 2015, Materials for Renewable and Sustainable Energy.

[124]  Thomas L. Reitz,et al.  Inkjet Printing of Anode Supported SOFC: Comparison of Slurry Pasted Cathode and Printed Cathode , 2009 .

[125]  H. Fischer,et al.  Direct Inkjet Printing of Dental Prostheses Made of Zirconia , 2009, Journal of dental research.