Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems

We perform a comparative analysis using three reduced-order strategies-Missing Point Estimation (MPE) method, Gappy POD method, and Discrete Empirical Interpolation Method (DEIM)-applied to a biological model describing the spatio-temporal dynamics of a predator-prey community. The comparative study is focused on the efficiency of the reduced-order approximations and the complexity reduction of the nonlinear terms. Different variants are discussed related to the projection-based model reduction framework combined with selective spatial sampling to efficiently perform the online computations. Numerical results are presented.

[1]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[2]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[3]  Adrian Sandu,et al.  Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations , 2014, International Journal for Numerical Methods in Fluids.

[4]  Hanchao Qi,et al.  Invariance of principal components under low-dimensional random projection of the data , 2012, 2012 19th IEEE International Conference on Image Processing.

[5]  Zahari Zlatev,et al.  Computer Treatment of Large Air Pollution Models , 1995 .

[6]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[7]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[8]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[9]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[10]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[11]  Sergei Petrovskii,et al.  An exact solution of a diffusive predator–prey system , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  James E. Fowler,et al.  Compressive-Projection Principal Component Analysis , 2009, IEEE Transactions on Image Processing.

[13]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[14]  Razvan Stefanescu,et al.  Numerical Simulations with Data Assimilation Using an Adaptive POD Procedure , 2009, LSSC.

[15]  Ionel M. Navon,et al.  An improved algorithm for the shallow water equations model reduction: Dynamic Mode Decomposition vs POD , 2015 .

[16]  Razvan Stefanescu,et al.  POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model , 2012, J. Comput. Phys..

[17]  M A Lewis,et al.  How predation can slow, stop or reverse a prey invasion , 2001, Bulletin of mathematical biology.

[18]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[19]  William F Fagan,et al.  Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens , 2000, The American Naturalist.

[20]  Danny C. Sorensen,et al.  A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..

[21]  J. Peraire,et al.  A ‘best points’ interpolation method for efficient approximation of parametrized functions , 2008 .

[22]  Belinda B. King,et al.  Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations , 2001 .

[23]  Razvan Stefanescu,et al.  Application of POD-DEIM Approach for Dimension Reduction of a Diffusive Predator-Prey System with Allee Effect , 2013, LSSC.

[24]  Gabriel Dimitriu Using Singular Value Decomposition in Conjunction with Data Assimilation Procedures , 2006, Numerical Methods and Applications.

[25]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[26]  Zahari Zlatev,et al.  Computational and Numerical Challenges in Environmental Modelling , 2006 .

[27]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[28]  Saifon Chaturantabut Dimension reduction for unsteady nonlinear partial differential equations via empirical interpolation methods , 2009 .

[29]  W. C. Allee The social life of animals , 1938 .

[30]  V. Volpert,et al.  Reaction-diffusion waves in biology. , 2009, Physics of life reviews.

[31]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[32]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[33]  Gabriel Dimitriu,et al.  Comparative Study with Data Assimilation Experiments Using Proper Orthogonal Decomposition Method , 2009, LSSC.

[34]  P. Astrid,et al.  Fast reduced order modeling technique for large scale LTV systems , 2004, Proceedings of the 2004 American Control Conference.

[35]  B. R. Noack,et al.  Reduced order modelling of a flow around an airfoil with a changing angle of attack , 2008 .

[36]  Karen Willcox,et al.  An Accelerated Greedy Missing Point Estimation Procedure , 2016, SIAM J. Sci. Comput..

[37]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[38]  J. Lumley Stochastic tools in turbulence , 1970 .

[39]  G. Karniadakis,et al.  Efficient sensor placement for ocean measurements using low-dimensional concepts , 2009 .

[40]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[41]  Bai-lian Li,et al.  Bifurcations and chaos in a predator-prey system with the Allee effect , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[43]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[44]  Gilead Tadmor,et al.  System reduction strategy for Galerkin models of fluid flows , 2009 .

[45]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[46]  Steven L. Brunton,et al.  Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[48]  Hong Zhang,et al.  The global stability of coexisting equilibria for three models of mutualism. , 2016, Mathematical biosciences and engineering : MBE.

[49]  Hassan M. Fathallah-Shaykh,et al.  Proper orthogonal decomposition for parameter estimation in oscillating biological networks , 2014, J. Comput. Appl. Math..

[50]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[51]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[52]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[53]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[54]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.