Analytical Modelling of High Concentrator Photovoltaic Modules Based on Atmospheric Parameters

The goal of this paper is to introduce a model to predict the maximum power of a high concentrator photovoltaic module. The model is based on simple mathematical expressions and atmospheric parameters. The maximum power of a HCPV module is estimated as a function of direct normal irradiance, cell temperature, and two spectral corrections based on air mass and aerosol optical depth. In order to check the quality of the model, a HCPV module was measured during one year at a wide range of operating conditions. The new proposed model shows an adequate match between actual and estimated data with a root mean square error (RMSE) of 2.67%, a mean absolute error (MAE) of 4.23 W, a mean bias error (MBE) of around 0%, and a determination coefficient () of 0.99.

[1]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[2]  José L. Bernal-Agustín,et al.  High concentration photovoltaic systems applying III–V cells , 2009 .

[3]  W. Marsden I and J , 2012 .

[4]  Eduardo F. Fernández,et al.  Models for the electrical characterization of high concentration photovoltaic cells and modules: A review , 2013 .

[5]  Eric Guiot,et al.  Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency , 2014 .

[6]  Mark W. Davis,et al.  Comparison of Photovoltaic Module Performance Measurements , 2005 .

[7]  Eduardo F. Fernández,et al.  Model for the prediction of the maximum power of a high concentrator photovoltaic module , 2013 .

[8]  Fuat Egelioğlu,et al.  A Review of Solar Photovoltaic Concentrators , 2014 .

[9]  P. G. Vidal,et al.  Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps , 2013 .

[10]  Carl R. Osterwald,et al.  Photovoltaic module calibration value versus optical air mass: the air mass function , 2014 .

[11]  H. Brindley,et al.  Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy , 2014 .

[12]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[13]  Kenji Araki,et al.  Temperature distribution in 820X CPV module during outdoor operation , 2012 .

[14]  D. L. Evans,et al.  Simplified method for predicting photovoltaic array output , 1980 .

[15]  S. Kurtz,et al.  An Investigation into Spectral Parameters as they Impact CPV Module Performance , 2010 .

[16]  Ruzhu Wang,et al.  Concentrated solar energy applications using Fresnel lenses: A review , 2011 .

[17]  Tapas K. Mallick,et al.  Non-uniform illumination in concentrating solar cells , 2012 .

[18]  Gerald Siefer,et al.  Analysis of temperature coefficients for III–V multi‐junction concentrator cells , 2014 .

[19]  C. Osterwald TRANSLATION OF DEVICE PERFORMANCE MEASUREMENTS TO REFERENCE CONDITIONS , 1986 .

[20]  Eduardo F. Fernández,et al.  A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations , 2013 .

[21]  J. A. Ruiz-Arias,et al.  Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions , 2014 .

[22]  Andreas Gombert,et al.  Modeling a grid-connected concentrator photovoltaic system: Modeling a grid-connected CPV system , 2015 .

[23]  D. L. King,et al.  Sandia National Laboratories , 2000 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Brent Fisher,et al.  Key parameters in determining energy generated by CPV modules , 2015 .

[26]  I. Antón,et al.  Multijunction solar cell model for translating I–V characteristics as a function of irradiance, spectrum, and cell temperature , 2010 .

[27]  Karsten Heuser,et al.  Performance results from micro‐cell based high concentration photovoltaic research development and demonstration systems , 2013 .

[28]  Eduardo F. Fernández,et al.  Relation between the cell temperature of a HCPV module and atmospheric parameters , 2012 .

[29]  K. Araki,et al.  Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan , 2013 .

[30]  Manuel Fuentes,et al.  Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module , 2014 .

[31]  F. Chenlo,et al.  Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites , 2014 .

[32]  Eduardo F. Fernández,et al.  Performance analysis of the lineal model for estimating the maximum power of a HCPV module in different climate conditions , 2014 .

[33]  Florencia Almonacid,et al.  Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications , 2014 .

[34]  Brent Fisher,et al.  Semprius Field Results and Progress in System Development , 2014, IEEE Journal of Photovoltaics.

[35]  D. L. King,et al.  Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[36]  William E. McMahon,et al.  Fill factor as a probe of current‐matching for GaInP2/GaAs tandem cells in a concentrator system during outdoor operation , 2008 .

[37]  I. Luque-Heredia,et al.  Photovoltaic concentration at the onset of its commercial deployment , 2006 .

[38]  Eduardo F. Fernández,et al.  Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: A study and comparison of different methods , 2014 .

[39]  Mark W. Davis,et al.  Short-term characterization of building integrated photovoltaic panels , 2003 .

[40]  G. Almonacid,et al.  High Concentrator PhotoVoltaics efficiencies: Present status and forecast , 2011 .

[41]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[42]  Eduardo F. Fernández,et al.  A method for estimating cell temperature at the maximum power point of a HCPV module under actual operating conditions , 2014 .

[43]  G. Peharz,et al.  YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules , 2015 .

[44]  I. Antón,et al.  Comparative analysis of different secondary optical elements for aspheric primary lenses. , 2009, Optics express.

[45]  Kenji Araki,et al.  Multi-junction III-V solar cells: current status and future potential , 2005 .

[46]  J. V. Muñoz,et al.  Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution , 2014 .