A brief introduction of quantum cryptography for engineers

We present the fundamental principles behind quantum key distribution and discuss a few well-known QKD protocols. Bearing in mind that the majority of our readers are from engineering and experimental optics, we focus more on the experimental implementation of various QKD protocols rather than security analysis. Another important topic that is covered here is the study of the security of practical QKD systems.

[1]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[2]  S. Wehner,et al.  Implementation of two-party protocols in the noisy-storage model , 2009, 0911.2302.

[3]  Hoi-Kwong Lo,et al.  How to implement two-party protocols in the noisy-storage model , 2009 .

[4]  H. Lo,et al.  Experimental demonstration of a high speed quantum random number generation scheme based on measuring phase noise of a single mode laser , 2009, 0908.3351.

[5]  J. Altepeter,et al.  Drop-in compatible entanglement for optical-fiber networks. , 2009, Optics express.

[6]  Naoto Namekata,et al.  1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. , 2009, Optics express.

[7]  James F. Dynes,et al.  Practical gigahertz quantum key distribution based on avalanche photodiodes , 2009 .

[8]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[9]  Douglas Stebila,et al.  The Case for Quantum Key Distribution , 2009, QuantumComm.

[10]  J. Cirac,et al.  De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. , 2008, Physical review letters.

[11]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[12]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[13]  Yi Zhao,et al.  Quantum key distribution with an unknown and untrusted source , 2008, 0802.2725.

[14]  D. Graham-Rowe Photons protect privacy , 2008 .

[15]  R. A. Smith,et al.  Single Photon Sources , 2008 .

[16]  H. Lo,et al.  Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers , 2007, 0709.3666.

[17]  A. W. Sharpe,et al.  High speed single photon detection in the near-infrared , 2007, 0707.4307.

[18]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[19]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[20]  K. Tamaki,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[21]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[22]  Jan Bouda,et al.  SECOQC White Paper on Quantum Key Distribution and Cryptography , 2007, ArXiv.

[23]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[24]  J. Dynes,et al.  Unconditionally secure one-way quantum key distribution using decoy pulses , 2006, 2007 Quantum Electronics and Laser Science Conference.

[25]  Richard J. Hughes,et al.  Long-distance decoy-state quantum key distribution in optical fiber. , 2006, Physical review letters.

[26]  Jian-Wei Pan,et al.  Experimental long-distance decoy-state quantum key distribution based on polarization encoding. , 2006, Physical review letters.

[27]  H. Lo,et al.  Time-shift attack in practical quantum cryptosystems , 2005, Quantum Inf. Comput..

[28]  Alan Mink,et al.  High-speed quantum key distribution system supports one-time pad encryption of real-time video , 2006, SPIE Defense + Commercial Sensing.

[29]  M. Mosca,et al.  Self-testing of Quantum Circuits , 2005, ICALP.

[30]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[31]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[32]  H. Lo,et al.  Experimental quantum key distribution with decoy states. , 2005, Physical review letters.

[33]  G. Brassard Brief history of quantum cryptography: a personal perspective , 2005, IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, 2005..

[34]  E. Diamanti,et al.  Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors , 2005, quant-ph/0506036.

[35]  H. Lo,et al.  Practical decoy state for quantum key distribution (15 pages) , 2005, quant-ph/0503005.

[36]  Xiang-Bin Wang Decoy-state protocol for quantum cryptography with four different intensities of coherent light , 2004, quant-ph/0411047.

[37]  Xiang‐Bin Wang,et al.  Beating the photon-number-splitting attack in practical quantum cryptography. , 2004, Physical review letters.

[38]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[39]  Nicolas Gisin,et al.  Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: Current performance , 2004 .

[40]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[41]  Charles H. Bennett,et al.  Experimental quantum cryptography , 1991, Journal of Cryptology.

[42]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[43]  W. Hwang Quantum key distribution with high loss: toward global secure communication. , 2002, Physical review letters.

[44]  G. Milburn,et al.  Quantum technology: the second quantum revolution , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  C. Elliott Building the quantum network* , 2002 .

[46]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.

[47]  V.F. Kleist,et al.  The code book: the science of secrecy from ancient egypt to quantum cryptography [Book Review] , 2002, IEEE Annals of the History of Computing.

[48]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[49]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[50]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[51]  N. Lutkenhaus Security against individual attacks for realistic quantum key distribution , 1999, quant-ph/9910093.

[52]  Andrew G. White,et al.  Ultra-bright source of polarization-entangled photons , 1998, quant-ph/9810003.

[53]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[54]  Donald P. Steury VENONA: Decoding Soviet Espionage in America , 1999 .

[55]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[56]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[57]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .

[58]  D. Mayers Unconditionally secure quantum bit commitment is impossible , 1996, quant-ph/9605044.

[59]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[60]  N. Gisin,et al.  “Plug and play” systems for quantum cryptography , 1996, quant-ph/9611042.

[61]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[62]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[63]  S. Barnett,et al.  Multi-user Quantum Cryptography on Optical Networks , 1995 .

[64]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[65]  R. Mcintyre,et al.  Photon counting techniques with silicon avalanche photodiodes. , 1993, Applied optics.

[66]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[67]  Gilles Brassard,et al.  Quantum Bit Commitment and Coin Tossing Protocols , 1990, CRYPTO.

[68]  David Chaum,et al.  Advances in Cryptology: Proceedings Of Crypto 83 , 2012 .

[69]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[70]  Nick Herbert FLASH—A superluminal communicator based upon a new kind of quantum measurement , 1982 .

[71]  D. Dieks Communication by EPR devices , 1982 .

[72]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[73]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[74]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[75]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[76]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[77]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[78]  G. S. Vernam,et al.  Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications , 1926, Transactions of the American Institute of Electrical Engineers.