A REFLECTARRAY ANTENNA BACKED ON FSS FOR LOW RCS AND HIGH RADIATION PERFORMANCES

This paper investigates the application of frequency- selective surface (FSS) in re∞ectarray antennas for the purpose of reducing radar cross section (RCS) level. Difierent from previous reports, the presented band-stop FSS structure is also characterized by the suppression of surface waves, which makes a contribution to better radiation performance. Two 14£14 re∞ectarray antennas backed on the FSS ground and a solid ground are designed and fabricated. Simulated and measured results show that the FSS ground can improve the 'in- band' gain by 1.1dB, decrease the sidelobe level by 6.4dB, and reduce the 'out-of-band' RCS efiectively when compared with the antenna with a solid ground plane of the same size.

[1]  Marek E. Bialkowski,et al.  Phasing of a microstrip reflectarray using multi-dimensional scaling of its elements , 2008 .

[2]  Mir Mojtaba Mirsalehi,et al.  COMPACT AND WIDEBAND 1-D MUSHROOM-LIKE EBG FILTERS , 2008 .

[3]  J. R. James,et al.  Minimising mutual coupling in thick substrate microstrip antenna arrays , 1997 .

[4]  S. Costanzo,et al.  TRANSMISSION LINE ANALYSIS OF APERTURE-COUPLED REFLECTARRAYS , 2008, Progress In Electromagnetics Research C.

[5]  Bing-Zhong Wang,et al.  Novel Broadband Reflectarray Antenna with Windmill-Shaped Elements for Millimeter-Wave Application , 2007 .

[6]  Marek E. Bialkowski,et al.  BANDWIDTH CONSIDERATIONS FOR A MICROSTRIP REFLECTARRAY , 2008 .

[7]  Sylvain Collardey,et al.  Use of electromagnetic band-gap materials for RCS reduction , 2005 .

[8]  Ying Liu,et al.  Aperture Coupled Microstrip Antenna with Low RCS , 2008 .

[9]  F. Tsai,et al.  Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach , 2003 .

[10]  Abdelhamid A. Shaalan,et al.  STUDY THE EFFECTS OF ELECTROMAGNETIC BAND-GAP (EBG) SUBSTRATE ON TWO PATCH MICROSTRIP ANTENNA , 2008 .

[11]  Quan Xue,et al.  Investigation of microstrip reflectarray using a photonic bandgap structure , 2001 .

[12]  Tatsuo Itoh,et al.  Novel 2-D photonic bandgap structure for microstrip lines , 1998 .

[13]  Asoke K. Bhattacharyya,et al.  Radar cross section reduction of a flat plate by ram coating , 1990 .

[14]  K.M. Shum,et al.  Gain enhancement of microstrip reflectarray incorporating a PBG structure , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[15]  R. Langley,et al.  Single-layer multiband frequency-selective surfaces , 1985 .

[16]  Farooq A. Tahir,et al.  Equivalent Electrical Circuit for Designing MEMS-Controlled Reflectarray Phase Shifters , 2010 .

[17]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[18]  Nai-Chang Yuan,et al.  HIGH IMPEDANCE GROUND PLANE (HIGP) INCORPORATED WITH RESISTANCE FOR RADAR CROSS SECTION (RCS) REDUCTION OF ANTENNA , 2008 .

[19]  Y. Liu,et al.  MICROSTRIP ANTENNA USING GROUND-CUT SLOTS FOR LOW RCS WITH SIZE MINIATURIZATION TECHNIQUES , 2008 .

[20]  S. Costanzo,et al.  Aperture-Coupled Reflectarrays with Enhanced Bandwidth Features , 2008 .

[21]  Le Liang,et al.  A Novel Design Approach for Dual-Band Electromagnetic Band-Gap Structure , 2008 .

[22]  Alan Tennant,et al.  General analysis of the phase-switched screen. Part 1: The single layer case , 2002 .

[23]  Vincent Fusco,et al.  RCS reduction technique for reflectarray antennas , 2003 .