A maximum likelihood method for an asymmetric MDS model

A maximum likelihood estimation method is proposed to fit an asymmetric multidimensional scaling model to a set of asymmetric data. This method is based on successive categories scaling, and enables us to analyze asymmetric proximity data measured, at least, at an ordinal scale level. It enables us to examine not only the appropriate scaling level of the data, but also the appropriate dimensionality of the model, using AIC. Prior to or in fitting the asymmetric MDS model, it is important to verify that the data are sufficiently asymmetric. Some variants of symmetry hypotheses are developed for this purpose. Since the emphasis in our paper is not on hypothesis testing, but on model diagnosis, we compare several candidate models including models with these hypotheses based on a similar model comparison idea using AIC. The method is applied to artificial data and a set of friendship data among nations in East Asia and the USA. Relations to other methods are also discussed.

[1]  Akinori Okada,et al.  Nonmetric Multidimensional Scaling of Asymmetric Proximities , 1987 .

[2]  Willem J. Heiser,et al.  Models for asymmetric proximities , 1996 .

[3]  Takayuki Saito,et al.  MULTIDIMENSIONAL SCALING OF ASYMMETRIC PROXIMITY: MODEL AND METHOD , 1990 .

[4]  J. Barra,et al.  Recent Developments in Statistics , 1978 .

[5]  Naohito Chino,et al.  A GENERALIZED INNER PRODUCT MODEL FOR THE ANALYSIS OF ASYMMETRY , 1990 .

[6]  Lloyd A. Jeffress The logistic distribution as an approximation to the normal curve , 1973 .

[7]  Roberto Rocci,et al.  Rotation Techniques in Asymmetric Multidimensional Scaling , 2002 .

[8]  J. Rushen The peck orders of chickens: How do they develop and why are they linear? , 1982, Animal Behaviour.

[9]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[10]  D. Luce,et al.  Detection and Recognition " ' , 2006 .

[11]  T. Saitô,et al.  Multidimensional scaling of asymmetric proximity , 1990 .

[12]  M. W. Birch Maximum Likelihood in Three-Way Contingency Tables , 1963 .

[13]  L. A. Goodman The Analysis of Cross-Classified Data: Independence, Quasi-Independence, and Interactions in Contingency Tables with or without Missing Entries , 1968 .

[14]  R. Nosofsky Stimulus bias, asymmetric similarity, and classification , 1991, Cognitive Psychology.

[15]  C. Read Tests of symmetry in three-way contingency tables , 1978 .

[16]  Willem J. Heiser,et al.  A Distance Representation of the Quasi-Symmetry Model and Related Distance Models , 2003 .

[17]  Eric R. Ziegel,et al.  Statistical Theory and Data Analysis II , 1990 .

[18]  J. Douglas Carroll,et al.  A quasi-nonmetric method for multidimensional scaling VIA an extended euclidean model , 1989 .

[19]  R. Harshman,et al.  A Model for the Analysis of Asymmetric Data in Marketing Research , 1982 .

[20]  A. Bowker,et al.  A test for symmetry in contingency tables. , 1948, Journal of the American Statistical Association.

[21]  Eugene Galanter,et al.  Handbook of mathematical psychology: I. , 1963 .

[22]  S. D. Silvey,et al.  Maximum-Likelihood Estimation Procedures and Associated Tests of Significance , 1960 .

[23]  J. F. Berge Reduction of asymmetry by rank-one matrices , 1997 .

[24]  A. Stuart A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION , 1955 .

[25]  Q. Mcnemar Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.

[26]  James O. Ramsay,et al.  Some small sample results for maximum likelihood estimation in multidimensional scaling , 1980 .

[27]  F. Gregory Ashby,et al.  Toward a Unified Theory of Similarity and Recognition , 1988 .

[28]  Naohito Chino,et al.  GEOMETRICAL STRUCTURES OF SOME NON-DISTANCE MODELS FOR ASYMMETRIC MDS , 1993 .

[29]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[30]  Jacqueline J. Meulman,et al.  New Developments in Psychometrics. , 2003 .

[31]  C. Krumhansl Concerning the Applicability of Geometric Models to Similarity Data : The Interrelationship Between Similarity and Spatial Density , 2005 .

[32]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[33]  Y. Takane,et al.  A generalization of GIPSCAL for the analysis of nonsymmetric data , 1994 .

[34]  Stanley P. Azen,et al.  Computational Statistics and Data Analysis (CSDA) , 2006 .

[35]  Akinori Okada,et al.  Asymmetric multidimensional scaling of two-mode three-way proximities , 1997 .

[36]  L. A. Goodman The Analysis of Cross-Classified Data Having Ordered and/or Unordered Categories: Association Models, Correlation Models, and Asymmetry Models for Contingency Tables With or Without Missing Entries , 1985 .

[37]  Waldo R. Tobler,et al.  Spatial Interaction Patterns , 1976 .

[38]  Takayuki Saito,et al.  ANALYSIS OF ASYMMETRIC PROXIMITY MATRIX BY A MODEL OF DISTANCE AND ADDITIVE TERMS , 1991 .

[39]  E. Holman Monotonic models for asymmetric proximities , 1979 .

[40]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[41]  Yoshio Takane,et al.  Multidimensional successive categories scaling: A maximum likelihood method , 1981 .

[42]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[43]  L. V. Jones,et al.  The measurement and prediction of judgment and choice. , 1970 .

[44]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[45]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[46]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[47]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[48]  Peter M. Bentler,et al.  Restricted multidimensional scaling models for asymmetric proximities , 1982 .

[49]  J. Leeuw,et al.  Multidimensional Data Analysis , 1989 .

[50]  P. Schönemann,et al.  Fitting one matrix to another under choice of a central dilation and a rigid motion , 1970 .

[51]  Yuhong Yang Can the Strengths of AIC and BIC Be Shared , 2005 .

[52]  W. Heiser,et al.  Graphical representations and odds ratios in a distance-association model for the analysis of cross-classified data , 2005 .

[53]  Jan de Leeuw,et al.  A special Jackknife for Multidimensional Scaling , 1986 .

[54]  John C. Gower,et al.  Graphical Representation of Asymmetric Matrices , 1978 .

[55]  Nickolay T. Trendafilov,et al.  GIPSCAL revisited. A projected gradient approach , 2002, Stat. Comput..

[56]  Y. Escoufier,et al.  Analyse factorielle des matrices carrees non symetriques , 1980 .

[57]  Naohito Chino,et al.  A GRAPHICAL TECHNIQUE FOR REPRESENTING THE ASYMMETRIC RELATIONSHIPS BETWEEN N OBJECTS , 1978 .

[58]  James T. Townsend,et al.  Mathematical models of recognition and confusion in psychology , 1983 .