Spectral Decay of Time and Frequency Limiting Operator
暂无分享,去创建一个
[1] Say Song Goh,et al. Extension principles for tight wavelet frames of periodic functions , 2008 .
[2] Vladimir Rokhlin,et al. On the evaluation of prolate spheroidal wave functions and associated quadrature rules , 2013, 1301.1707.
[3] H. Landau. The eigenvalue behavior of certain convolution equations , 1965 .
[4] Vladimir Rokhlin,et al. Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit , 2007 .
[5] D. Slepian. Some Asymptotic Expansions for Prolate Spheroidal Wave Functions , 1965 .
[6] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. II , 1964 .
[7] Vladimir Rokhlin,et al. Prolate spheroidal wave functions, quadrature, interpolation, and asymptotic formulae , 2001 .
[8] V. Rokhlin,et al. Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation , 2013 .
[9] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .
[10] E. C. OBI. Eigenvalue Distribution of Time and Frequency Limiting , 2007 .
[11] V. Rokhlin,et al. Prolate Spheroidal Wave Functions of Order Zero , 2013 .
[12] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[13] W. Fuchs. On the eigenvalues of an integral equation arising in the theory of band-limited signals , 1964 .
[14] J. Lakey,et al. Duration and Bandwidth Limiting , 2012 .
[15] Abderrazek Karoui,et al. Uniform bounds of prolate spheroidal wave functions and eigenvalues decay , 2014 .
[16] Abderrazek Karoui,et al. New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues , 2008 .
[17] Andrei Osipov. Certain inequalities involving prolate spheroidal wave functions and associated quantities , 2013 .
[18] D. Donev. Prolate Spheroidal Wave Functions , 2017 .
[19] John P. Boyd,et al. Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions , 2003 .
[20] T. M. Dunster. Uniform asymptotic expansions for prolate spheriodal functions with large parameters , 1986 .
[21] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[22] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[23] J. Lakey,et al. Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications , 2011 .
[24] Andrei Osipov. Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions , 2012 .