Energy transfer between lasers in low-gas-fill-density hohlraums

[1]  O A Hurricane,et al.  High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility. , 2014, Physical review letters.

[2]  D. K. Bradley,et al.  Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility , 2014 .

[3]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[4]  E. Dewald,et al.  Design of a high-foot high-adiabat ICF capsule for the national ignition facility. , 2013, Physical review letters.

[5]  P. Michel,et al.  Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility , 2016 .

[6]  D. Turnbull,et al.  High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility. , 2018, Physical review letters.

[7]  D. Turnbull,et al.  The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility , 2017 .

[8]  Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility , 2016 .

[9]  L. J. Atherton,et al.  Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma , 2012, Nature Physics.

[10]  J. R. Rygg,et al.  Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facilitya) , 2014 .

[11]  A Pak,et al.  2D X-ray radiography of imploding capsules at the national ignition facility. , 2014, Physical review letters.

[12]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[13]  K. G. Krauter,et al.  Shock Timing experiments on the National Ignition Facility , 2011 .

[14]  Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics. , 2016, Physical review letters.

[15]  L. Divol,et al.  Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser , 2018 .

[16]  O A Hurricane,et al.  Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility. , 2016, Physical review letters.

[17]  R. F. Smith,et al.  Ramp compression of diamond to five terapascals , 2014, Nature.

[18]  A Nikroo,et al.  Raman backscatter as a remote laser power sensor in high-energy-density plasmas. , 2013, Physical review letters.

[19]  L. J. Atherton,et al.  A high-resolution integrated model of the National Ignition Campaign cryogenic layered experimentsa) , 2012 .

[20]  L. Divol,et al.  The influence of hohlraum dynamics on implosion symmetry in indirect drive inertial confinement fusion experiments , 2018, Physics of Plasmas.

[21]  J. D. Moody,et al.  Inertially confined fusion plasmas dominated by alpha-particle self-heating , 2016, Nature Physics.

[22]  John Kelly,et al.  Crossed-beam energy transfer in direct-drive implosions , 2011 .

[23]  Scott C. Wilks,et al.  Energy transfer between crossing laser beams , 1996 .

[24]  L. Divol,et al.  Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility , 2018, Plasma Physics and Controlled Fusion.

[25]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[26]  P. Michel,et al.  Early-time symmetry tuning in the presence of cross-beam energy transfer in ICF experiments on the National Ignition Facility. , 2013, Physical review letters.

[27]  Neal R. Pederson,et al.  Gated x-ray detector for the National Ignition Facility , 2006 .

[28]  P. Michel,et al.  Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heatinga) , 2013 .

[29]  Gilbert W. Collins,et al.  The effect of nearly steady shock waves in ramp compression experiments , 2015 .

[30]  J. R. Rygg,et al.  Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity , 2017 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  O. Landen,et al.  Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators , 2018 .

[33]  David K. Bradley,et al.  Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility , 2004 .

[34]  D. K. Bradley,et al.  Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .

[35]  John R. Celeste,et al.  eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility , 2016 .

[36]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[37]  Jay D. Salmonson,et al.  Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility , 2016 .

[38]  D. Turnbull,et al.  The near vacuum hohlraum campaign at the NIF: A new approach , 2015 .

[39]  J. D. Moody,et al.  Symmetry tuning for ignition capsules via the symcap techniquea) , 2011 .

[40]  P. Michel,et al.  The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums , 2011 .

[41]  J. R. Rygg,et al.  First high-convergence cryogenic implosion in a near-vacuum hohlraum. , 2015, Physical review letters.

[42]  D. Strozzi,et al.  Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility , 2018, Physics of Plasmas.

[43]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[44]  D. Turnbull,et al.  Towards a more universal understanding of radiation drive in gas-filled hohlraums , 2016 .

[45]  O. Landen,et al.  Integrated modeling of cryogenic layered highfoot experiments at the NIF , 2016 .

[46]  Edward I. Moses,et al.  The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .