Role of La doping for topological Hall effect in epitaxial EuO films

We report the critical role of La doping in the topological Hall effect observed in LaxEu1-xO thin films (~ 50 nm) grown by molecular beam epitaxy. When the La doping exceeds 0.036, topological Hall effect emerges, which we attribute to the formation of magnetic skyrmions. Besides, the La doping is found to play a critical role in determining the phases, densities, and sizes of the skyrmions in the LaxEu1-xO thin films. The maximum region of the skyrmion phase diagram is observed on the La0.1Eu0.9O thin film. As the La doping increases, the skyrmion density increases while the skyrmion size decreases. Our findings demonstrate the important role of La doping for the skyrmions in EuO films, which could be important for future studies of magnetic skyrmions in Heisenberg ferromagnets.

[1]  B. Ivanov,et al.  Stabilization of magnetic skyrmions by RKKY interactions , 2017, 1710.08000.

[2]  J. Zang,et al.  Skyrmions in magnetic multilayers , 2017, 1706.08295.

[3]  P. Fischer,et al.  Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy , 2017, Nature Communications.

[4]  Q. Xue,et al.  Dimensional Crossover-Induced Topological Hall Effect in a Magnetic Topological Insulator. , 2017, Physical review letters.

[5]  Y. Tokura,et al.  Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer , 2016, Science Advances.

[6]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[7]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[8]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[9]  Ania C. Bleszynski Jayich,et al.  Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. , 2015, Nature nanotechnology.

[10]  A. N’Diaye,et al.  Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .

[11]  M. Kawasaki,et al.  Topological Hall effect in thin films of the Heisenberg ferromagnet EuO , 2015 .

[12]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[13]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[14]  M. Mostovoy,et al.  Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.

[15]  J. C. Loudon,et al.  Hall effect and transmission electron microscopy of epitaxial MnSi thin films , 2014 .

[16]  S. Altendorf,et al.  Growth and characterization of Sc-doped EuO thin films , 2014 .

[17]  H. Hwang,et al.  Multiple helimagnetic phases and topological Hall effect in epitaxial thin films of pristine and Co-doped SrFeO3 , 2013 .

[18]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[19]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[20]  P. Monteiro,et al.  Spatially homogeneous ferromagnetism below the enhanced Curie temperature in EuO(1-x) thin films. , 2013, Physical review letters.

[21]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[22]  D. Schlom,et al.  Influence of chemical doping on the magnetic properties of EuO , 2013 .

[23]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[24]  B. Holländer,et al.  Lutetium-doped EuO films grown by molecular-beam epitaxy , 2012 .

[25]  H. Berger,et al.  Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. , 2012, Physical review letters.

[26]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[27]  H. Kawamura,et al.  Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.

[28]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[29]  Y. Tokura,et al.  Versatile helimagnetic phases under magnetic fields in cubic perovskite SrFeO 3 , 2011, 1107.5184.

[30]  M. Kawasaki,et al.  Observation of anomalous Hall effect in EuO epitaxial thin films grown by a pulse laser deposition , 2011 .

[31]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[32]  P. Böni,et al.  Is there an intrinsic limit to the charge-carrier-induced increase of the Curie temperature of EuO? , 2010, Physical review letters.

[33]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[34]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[35]  P M Bentley,et al.  Chiral paramagnetic skyrmion-like phase in MnSi. , 2009, Physical review letters.

[36]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[37]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[38]  S. Altendorf,et al.  Epitaxial and layer-by-layer growth of EuO thin films on yttria-stabilized cubic zirconia (001) using MBE distillation , 2009, 0902.0330.

[39]  N. Nagaosa,et al.  Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets , 2007, 0712.0210.

[40]  D. Muller,et al.  Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN. , 2007, Nature materials.

[41]  P. Bruno,et al.  Topological Hall effect and Berry phase in magnetic nanostructures. , 2003, Physical review letters.

[42]  V. Pokrovsky,et al.  Skyrmion in a real magnetic film , 1998, cond-mat/9801114.

[43]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[44]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .