A Semi-Classical Model for Simulating Inversion Carrier Transport in Si MOS Devices

A semiclassical Monte Carlo model is given for simulating electron transport in Si-MOS inversion layers. The main feature of the model is that it takes into account the existence of a nonstoichiometric SiOx layer between bulk Si and the SiO2 matrix. The band-gap in this layer is supposed to evolve linearly perpendicular to the interface from that of Si to that of SiO2. However, the band structure and electron dynamics in the SiOx layer are supposed to be dominantly that of Si. Results for drift velocity in the hot carrier regime are compared with the most recent experimental data. The spatial evolution of the carrier concentration near the interface is also investigated. It is found that the carriers may penetrate into the SiOx layer. Ce travail presente un modele de Monte-Carlo semiclassique pour simuler le transport electronique dans la couche d'inversion d'une structure MOS. L'originalite de ce modele reside dans la prise en compte de l'existence de la couche nonstoechiometrique SiOx entre le silicium en volume et la matrice de SiO2. Dans une premiere etape nous supposons que l'evolution du bas de la bande de conduction dans la zone de transition SiOx est lineaire, et que la structure de bande et la dynamique electronique dans la zone de SiOx sont semblables a celles dans le silicium en volume. Les resultats concernsnt la vitesse de derive des electrons chauds sont comparees avec les donnees experimentales los plus recentes. Nous etudions aussi l'evolution spaciale des porteurs au voisinage de l'interface Si-SiO2 : il apparait qu'une partie des porteurs de la couche d'inversion peut penetrer dam la zone de transition SiOx.

[1]  D. F. Nelson,et al.  Measurement of the high-field drift velocity of electrons in inversion layers on silicon , 1981, IEEE Electron Device Letters.

[2]  M. Charef,et al.  Electron dynamics in P-Si m.o.s.f.e.t. inversion channels , 1980 .

[3]  I. Eisele,et al.  Velocity saturation in short channel field effect transistors , 1980 .

[4]  P. Rossel,et al.  Influence de la température sur la vitesse limite des porteurs dans un transistor M.O.S. à canal court , 1980 .

[5]  G. Merckel Une méthode simple de détermination de la vitesse limite des porteurs, dans les transistors MOS , 1980 .

[6]  H. Tranduc,et al.  Influence de la contre-réaction thermique sur l'impédance de sortie des transistors MOS à canaux courts , 1979 .

[7]  K. Hübner Energy-gap variation at the Si-SiOx–SiO2 interface , 1979 .

[8]  C. R. Helms Morphology and electronic structure of Si–SiO2 interfaces and Si surfaces , 1979 .

[9]  Carl W. Wilmsen,et al.  Auger analysis of ultrathin SiO2 layers on silicon , 1979 .

[10]  P. K. Basu Monte Carlo calculation of hot electron drift velocity in silicon (100)-inversion layer by including three subbands , 1978 .

[11]  E. Constant,et al.  Monte Carlo calculation of microwave and far‐infrared hot‐carrier mobility in N‐Si: Efficiency of millimeter transit‐time oscillators , 1978 .

[12]  D. Ferry,et al.  Microwave hot electron effects in semiconductor quantized inversion layers , 1977 .

[13]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[14]  K. Nakamura Hot electrons in Si inversion layer , 1976 .

[15]  W. Spicer,et al.  An Auger analysis of the SiO2‐Si interface , 1976 .

[16]  C. Canali,et al.  Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature , 1975, IEEE Transactions on Electron Devices.

[17]  K. Hess,et al.  Non−Ohmic electron conduction in silicon surface inversion layers at low temperatures , 1975 .

[18]  Frank Stern,et al.  Quantum properties of surface space-charge layers , 1973 .

[19]  T. H. Ning,et al.  The scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface , 1972 .

[20]  Y. Okamoto,et al.  Drift-Velocity Saturation of Holes in Si Inversion Layers , 1971 .

[21]  F. Fang,et al.  Hot Electron Effects and Saturation Velocities in Silicon Inversion Layers , 1970 .

[22]  F. Fang,et al.  Transport Properties of Electrons in Inverted Silicon Surfaces , 1968 .

[23]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[24]  C. R. Helms Morphology of the Si-SiO2 Interface , 1981 .

[25]  R. W. Coen,et al.  Velocity of surface carriers in inversion layers on silicon , 1980 .

[26]  D. K. Ferry,et al.  Transport of hot carriers in semiconductor quantized inversion layers , 1978 .

[27]  K. Hess Review of experimental aspects of hot electron transport in MOS structures , 1978 .

[28]  P. K. Basu High‐field drift velocity of silicon inversion layers—a Monte Carlo calculation , 1977 .

[29]  D. K. Ferry,et al.  Hot-electron effects in silicon quantized inversion layers , 1976 .

[30]  G. D. Vendelin,et al.  D-MOS transistor for microwave applications , 1972 .