eFG: an electronic resource for Fusarium graminearum

Fusarium graminearum is a plant pathogen, which causes crop diseases and further leads to huge economic damage worldwide in past decades. Recently, the accumulation of different types of molecular data provides insights into the pathogenic mechanism of F. graminearum, and might help develop efficient strategies to combat this destructive fungus. Unfortunately, most available molecular data related to F. graminearum are distributed in various media, where each single source only provides limited information on the complex biological systems of the fungus. In this work, we present a comprehensive database, namely eFG (Electronic resource for Fusarium graminearum), to the community for further understanding this destructive pathogen. In particular, a large amount of functional genomics data generated by our group is deposited in eFG, including protein subcellular localizations, protein–protein interactions and orthologous genes in other model organisms. This valuable knowledge can not only help to disclose the molecular underpinnings of pathogenesis of the destructive fungus F. graminearum but also help the community to develop efficient strategies to combat this pathogen. To our best knowledge, eFG is the most comprehensive functional genomics database for F. graminearum until now. The eFG database is freely accessible at http://csb.shu.edu.cn/efg/ with a user-friendly and interactive interface, and all data can be downloaded freely. Database URL: http://csb.shu.edu.cn/efg/

[1]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[2]  A. Andrianopoulos,et al.  Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. , 1997, Fungal genetics and biology : FG & B.

[3]  Julie A. Dickerson,et al.  PLEXdb: gene expression resources for plants and plant pathogens , 2011, Nucleic Acids Res..

[4]  Christina A. Cuomo,et al.  Source (or Part of the following Source): Type Article Title Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium Author(s) , 2022 .

[5]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[6]  Christopher J. Rawlings,et al.  PHI-base: a new database for pathogen host interactions , 2005, Nucleic Acids Res..

[7]  B. Howlett,et al.  Pathogenicity genes of phytopathogenic fungi. , 2001, Molecular plant pathology.

[8]  J. Manners,et al.  On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. , 2012, Molecular plant pathology.

[9]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[10]  Joaquín Dopazo,et al.  PupasView: a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes , 2005, Nucleic Acids Res..

[11]  H. Mewes,et al.  The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. , 2004, Nucleic acids research.

[12]  Xingming Zhao,et al.  A Network Approach to Predict Pathogenic Genes for Fusarium graminearum , 2010, PloS one.

[13]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..

[14]  Xing-Ming Zhao,et al.  FGsub: Fusarium graminearum protein subcellular localizations predicted from primary structures , 2010, BMC Systems Biology.

[15]  J. Pestka,et al.  Deoxynivalenol: Toxicology and Potential Effects on Humans , 2005, Journal of toxicology and environmental health. Part B, Critical reviews.

[16]  Gerhard Adam,et al.  FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum , 2005, Nucleic Acids Res..

[17]  Minoru Kanehisa,et al.  The KEGG database. , 2002, Novartis Foundation symposium.

[18]  Giorgio Valle,et al.  The Gene Ontology project in 2008 , 2007, Nucleic Acids Res..

[19]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[20]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[21]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[22]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[23]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[24]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[25]  K. Aihara,et al.  Uncovering signal transduction networks from high-throughput data by integer linear programming , 2008, Nucleic acids research.

[26]  K. Aihara,et al.  A discriminative approach for identifying domain–domain interactions from protein–protein interactions , 2010, Proteins.

[27]  Christina A. Cuomo,et al.  The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization , 2007, Science.

[28]  Gerhard Adam,et al.  FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum , 2010, Nucleic Acids Res..

[29]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[30]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[31]  Xing-Ming Zhao,et al.  DIPOS: database of interacting proteins in Oryza sativa. , 2011, Molecular bioSystems.

[32]  A. E. Desjardins Fusarium Mycotoxins: Chemistry, Genetics, And Biology , 2006 .

[33]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[34]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[35]  Roger Jones,et al.  Scab of Wheat and Barley: A Re-emerging Disease of Devastating Impact. , 1997, Plant disease.

[36]  S. Chakraborty,et al.  Population Genetics of Three Important Head Blight Pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum , 2008 .

[37]  Xing-Ming Zhao,et al.  FPPI: Fusarium graminearum protein-protein interaction database. , 2009, Journal of proteome research.

[38]  Neil D. Rawlings,et al.  MEROPS: the peptidase database , 2009, Nucleic Acids Res..

[39]  Paul Nicholson,et al.  Action and reaction of host and pathogen during Fusarium head blight disease. , 2010, The New phytologist.