Straight rod with different order of thickness

In this paper, we consider rods whose thickness vary linearly between $\eps$ and $\eps^2$. Our aim is to study the asymptotic behavior of these rods in the framework of the linear elasticity. We use a decomposition method of the displacement fields of the form $u=U_e + \bar{u}$, where $U_e$ stands for the translation-rotations of the cross-sections and $\bar{u}$ is related to their deformations. We establish a priori estimates. Passing to the limit in a fixed domain gives the problems satisfied by the bending, the stretching and the torsion limit fields which are ordinary differential equations depending on weights.

[1]  Decompositions of displacements of thin structures , 2008 .

[2]  G. Griso Asymptotic behaviour of curved rods by the unfolding method , 2004 .

[3]  Georges Griso,et al.  Microscopic effects in the homogenization of the junction of rods and a thin plate , 2008, Asymptot. Anal..

[4]  Décomposition des déplacements d'une poutre : simplification d'un problème d'élasticité , 2005 .

[5]  Bohumír Opic,et al.  How to define reasonably weighted Sobolev spaces , 1984 .

[6]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[7]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[8]  Georges Griso Comportement asymptotique d'une grue , 2004 .

[9]  Locally periodic thin domains with varying period , 2014 .

[10]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[11]  Statics of curved rods on account of torsion and flexion , 1999 .

[12]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Domains with Holes , 2012, SIAM J. Math. Anal..

[13]  Georges Griso,et al.  Junction of a periodic family of elastic rods with a 3d plate. Part I , 2007 .

[14]  Georges Griso,et al.  Junction of a periodic family of elastic rods with a thin plate . Part II , 2006 .

[15]  J. M. Viaño,et al.  Mathematical modelling of rods , 1996 .

[16]  Alain Damlamian,et al.  Homogenization of oscillating boundaries , 2008 .

[17]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .