Limit Theorems for Functionals of Higher Order Differences of Brownian Semi-Stationary Processes

We present some new asymptotic results for functionals of higher order differences of Brownian semi-stationary processes. In an earlier work [4] we have derived a similar asymptotic theory for first order differences. However, the central limit theorems were valid only for certain values of the smoothness parameter of a Brownian semistationary process, and the parameter values which appear in typical applications, e.g. in modeling turbulent flows in physics, were excluded. The main goal of the current paper is the derivation of the asymptotic theory for the whole range of the smoothness parameter by means of using second order differences. We present the law of large numbers for the multipower variation of the second order differences of Brownian semi-stationary processes and show the associated central limit theorem. Finally, we demonstrate some estimation methods for the smoothness parameter of a Brownian semi-stationary process as an application of our probabilistic results.

[1]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[2]  O. Barndorff-Nielsen,et al.  Bipower Variation for Gaussian Processes with Stationary Increments , 2008, Journal of Applied Probability.

[3]  Neil Shephard,et al.  Limit theorems for multipower variation in the presence of jumps , 2006 .

[4]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[5]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[6]  M. Podolskij,et al.  A Note on the Central Limit Theorem for Bipower Variation of General Functions. , 2008 .

[7]  Robinson Kruse,et al.  Forecasting Long Memory Time Series Under a Break in Persistence , 2009 .

[8]  L. C. Young,et al.  An inequality of the Hölder type, connected with Stieltjes integration , 1936 .

[9]  A. Basse Gaussian Moving Averages and Semimartingales , 2008 .

[10]  Ole E. Barndorff-Nielsen,et al.  Brownian Semistationary Processes and Volatility/Intermittency , 2009 .

[11]  Hansjörg Albrecher,et al.  Advanced Financial Modelling , 2009 .

[12]  M. Émery,et al.  Séminaire de Probabilités XXXVIII , 2005 .

[13]  Giovanni Peccati,et al.  Central limit theorems for sequences of multiple stochastic integrals , 2005 .

[14]  F. Roueff,et al.  Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .

[15]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[16]  G. Peccati,et al.  Gaussian Limits for Vector-valued Multiple Stochastic Integrals , 2005 .

[17]  D. Lépingle,et al.  La variation d'ordre p des semi-martingales , 1976 .

[18]  David Aldous,et al.  On Mixing and Stability of Limit Theorems , 1978 .

[19]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[20]  Limit theorems for bipower variation of semimartingales , 2010 .

[21]  Mark Podolskij,et al.  Multipower Variation for Brownian Semistationary Processes , 2009, 1201.0868.

[22]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[23]  David Nualart,et al.  Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007 .

[24]  Power variation for Gaussian processes with stationary increments , 2009 .

[25]  G. Simons,et al.  Inequalities for Ek(X, Y) when the marginals are fixed , 1976 .