Limit Theorems for Functionals of Higher Order Differences of Brownian Semi-Stationary Processes
暂无分享,去创建一个
[1] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[2] O. Barndorff-Nielsen,et al. Bipower Variation for Gaussian Processes with Stationary Increments , 2008, Journal of Applied Probability.
[3] Neil Shephard,et al. Limit theorems for multipower variation in the presence of jumps , 2006 .
[4] N. Shephard,et al. Power and bipower variation with stochastic volatility and jumps , 2003 .
[5] Jean Jacod,et al. A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .
[6] M. Podolskij,et al. A Note on the Central Limit Theorem for Bipower Variation of General Functions. , 2008 .
[7] Robinson Kruse,et al. Forecasting Long Memory Time Series Under a Break in Persistence , 2009 .
[8] L. C. Young,et al. An inequality of the Hölder type, connected with Stieltjes integration , 1936 .
[9] A. Basse. Gaussian Moving Averages and Semimartingales , 2008 .
[10] Ole E. Barndorff-Nielsen,et al. Brownian Semistationary Processes and Volatility/Intermittency , 2009 .
[11] Hansjörg Albrecher,et al. Advanced Financial Modelling , 2009 .
[12] M. Émery,et al. Séminaire de Probabilités XXXVIII , 2005 .
[13] Giovanni Peccati,et al. Central limit theorems for sequences of multiple stochastic integrals , 2005 .
[14] F. Roueff,et al. Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .
[15] N. Shephard,et al. Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .
[16] G. Peccati,et al. Gaussian Limits for Vector-valued Multiple Stochastic Integrals , 2005 .
[17] D. Lépingle,et al. La variation d'ordre p des semi-martingales , 1976 .
[18] David Aldous,et al. On Mixing and Stability of Limit Theorems , 1978 .
[19] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[20] Limit theorems for bipower variation of semimartingales , 2010 .
[21] Mark Podolskij,et al. Multipower Variation for Brownian Semistationary Processes , 2009, 1201.0868.
[22] Jean Jacod,et al. Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.
[23] David Nualart,et al. Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007 .
[24] Power variation for Gaussian processes with stationary increments , 2009 .
[25] G. Simons,et al. Inequalities for Ek(X, Y) when the marginals are fixed , 1976 .