A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation.

As a versatile pathogen Staphylococcus aureus can cause various disease patterns, which are influenced by strain specific virulence factor repertoires but also by S. aureus physiological adaptation capacity. Here, we present metabolomic descriptions of S. aureus central metabolic pathways and demonstrate the potential for combined metabolomics- and proteomics-based approaches for the basic research of this important pathogen. This study provides a time-resolved picture of more than 500 proteins and 94 metabolites during the transition from exponential growth to glucose starvation. Under glucose excess, cells exhibited higher levels of proteins involved in glycolysis and protein-synthesis, whereas entry into the stationary phase triggered an increase of enzymes of TCC and gluconeogenesis. These alterations in levels of metabolic enzymes were paralleled by more pronounced changes in the concentrations of associated metabolites, in particular, intermediates of the glycolysis and several amino acids.

[1]  Manuel Liebeke,et al.  A metabolomic view of Staphylococcus aureus and its ser/thr kinase and phosphatase deletion mutants: involvement in cell wall biosynthesis. , 2010, Chemistry & biology.

[2]  Manuel Liebeke,et al.  A protocol for the investigation of the intracellular Staphylococcus aureus metabolome. , 2010, Analytical biochemistry.

[3]  G. Somerville,et al.  Tricarboxylic Acid Cycle-Dependent Synthesis of Staphylococcus aureus Type 5 and 8 Capsular Polysaccharides , 2010, Journal of bacteriology.

[4]  Patrick H. Bradley,et al.  Growth-limiting Intracellular Metabolites in Yeast Growing under Diverse Nutrient Limitations , 2010, Molecular biology of the cell.

[5]  D. Zühlke,et al.  A Proteomic View of an Important Human Pathogen – Towards the Quantification of the Entire Staphylococcus aureus Proteome , 2009, PloS one.

[6]  Manuel Liebeke,et al.  Diamide Triggers Mainly S Thiolations in the Cytoplasmic Proteomes of Bacillus subtilis and Staphylococcus aureus , 2009, Journal of bacteriology.

[7]  Barbara M. Bakker,et al.  Time‐dependent regulation analysis dissects shifts between metabolic and gene‐expression regulation during nitrogen starvation in baker’s yeast , 2009, The FEBS journal.

[8]  Manuel Liebeke,et al.  Proteolysis during long‐term glucose starvation in Staphylococcus aureus COL , 2009, Proteomics.

[9]  P. Fey,et al.  Tricarboxylic Acid Cycle-Dependent Attenuation of Staphylococcus aureus In Vivo Virulence by Selective Inhibition of Amino Acid Transport , 2009, Infection and Immunity.

[10]  F. Lowy Staphylococcus aureus infections. , 2009, The New England journal of medicine.

[11]  R. Proctor,et al.  At the Crossroads of Bacterial Metabolism and Virulence Factor Synthesis in Staphylococci , 2009, Microbiology and Molecular Biology Reviews.

[12]  P. François,et al.  Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus , 2009, BMC Microbiology.

[13]  R. Proctor,et al.  Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures , 2009, BMC Microbiology.

[14]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[15]  A. Barabasi,et al.  Targets Drug Genomes Identify Novel Antimicrobial Staphylococcus Aureus of Multiple Reconstruction and Flux Balance Analysis Comparative Genome-scale Metabolic Supplemental Material , 2009 .

[16]  Manuel Liebeke,et al.  Transcriptome and Functional Analysis of the Eukaryotic-Type Serine/Threonine Kinase PknB in Staphylococcus aureus , 2009, Journal of bacteriology.

[17]  Manuel Liebeke,et al.  Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria , 2009, Applied Microbiology and Biotechnology.

[18]  P. François,et al.  CodY in Staphylococcus aureus: a Regulatory Link between Metabolism and Virulence Gene Expression , 2009, Journal of bacteriology.

[19]  U. Völker,et al.  Novel Activities of Glycolytic Enzymes in Bacillus subtilis , 2009, Molecular & Cellular Proteomics.

[20]  Manuel Liebeke,et al.  Characterization of the Oxygen-Responsive NreABC Regulon of Staphylococcus aureus , 2008, Journal of bacteriology.

[21]  Manuel Liebeke,et al.  Depletion of thiol‐containing proteins in response to quinones in Bacillus subtilis , 2008, Molecular microbiology.

[22]  B. Görke,et al.  Carbon catabolite repression in bacteria: many ways to make the most out of nutrients , 2008, Nature Reviews Microbiology.

[23]  T. Hankemeier,et al.  Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. , 2008, Molecular bioSystems.

[24]  Masaru Tomita,et al.  Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. , 2008, Molecular bioSystems.

[25]  A. Sonenshein,et al.  Staphylococcus aureus CodY Negatively Regulates Virulence Gene Expression , 2007, Journal of bacteriology.

[26]  A. Sonenshein,et al.  Control of key metabolic intersections in Bacillus subtilis , 2007, Nature Reviews Microbiology.

[27]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[28]  Michael Hecker,et al.  Integrated network reconstruction, visualization and analysis using YANAsquare , 2007, BMC Bioinformatics.

[29]  Matthias Berth,et al.  The state of the art in the analysis of two-dimensional gel electrophoresis images , 2007, Applied Microbiology and Biotechnology.

[30]  S. Fuchs,et al.  Anaerobic Gene Expression in Staphylococcus aureus , 2007, Journal of bacteriology.

[31]  Dieter Jahn,et al.  MetaQuant: a tool for the automatic quantification of GC/MS-based metabolome data , 2006, Bioinform..

[32]  H V Westerhoff,et al.  Time-dependent hierarchical regulation analysis: deciphering cellular adaptation. , 2006, Systems biology.

[33]  Falk Schreiber,et al.  VANTED: A system for advanced data analysis and visualization in the context of biological networks , 2006, BMC Bioinformatics.

[34]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[35]  K. Bayles,et al.  The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons , 2006, Molecular microbiology.

[36]  Anne Kümmel,et al.  In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. , 2005, Biotechnology and bioengineering.

[37]  S. Fuchs,et al.  Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach. , 2005, International journal of medical microbiology : IJMM.

[38]  Samuel V. Angiuoli,et al.  Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain , 2005, Journal of bacteriology.

[39]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[40]  M. Hecker,et al.  MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp‐dependent proteolysis in Bacillus subtilis , 2004, Molecular microbiology.

[41]  S. Engelmann,et al.  Physiological Characterization of a Heme-Deficient Mutant of Staphylococcus aureus by a Proteomic Approach , 2003, Journal of bacteriology.

[42]  James M. Musser,et al.  Correlation of Acetate Catabolism and Growth Yield in Staphylococcus aureus: Implications for Host-Pathogen Interactions , 2003, Infection and Immunity.

[43]  R. Novick Autoinduction and signal transduction in the regulation of staphylococcal virulence , 2003, Molecular microbiology.

[44]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[45]  J. Musser,et al.  Staphylococcus aureus Aconitase Inactivation Unexpectedly Inhibits Post-Exponential-Phase Growth and Enhances Stationary-Phase Survival , 2002, Infection and Immunity.

[46]  J. Bernhardt,et al.  A comprehensive two‐dimensional map of cytosolic proteins of Bacillus subtilis , 2001, Electrophoresis.

[47]  I. Korona-Głowniak,et al.  2-Oxoglutarate transport system in Staphylococcus aureus , 2001, Archives of Microbiology.

[48]  M. Hecker,et al.  Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon , 2001, Molecular microbiology.

[49]  B. Starcher,et al.  A ninhydrin-based assay to quantitate the total protein content of tissue samples. , 2001, Analytical biochemistry.

[50]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[51]  J. Hacker,et al.  Regulation of σB-dependent transcription of sigB and asp23 in two different Staphylococcus aureus strains , 1999, Molecular and General Genetics MGG.

[52]  S. Foster,et al.  Characterization of the Starvation-Survival Response of Staphylococcus aureus , 1998, Journal of bacteriology.

[53]  A. Sonenshein,et al.  Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine , 1985, Journal of bacteriology.

[54]  W. Shafer,et al.  Genetics of staphylococcal enterotoxin B in methicillin-resistant isolates of Staphylococcus aureus , 1979, Infection and immunity.

[55]  H. Blumenthal,et al.  COMPARATIVE ASPECTS OF GLUCOSE CATABOLISM IN STAPHYLOCOCCUS AUREUS AND S. EPIDERMIDIS , 1974, Annals of the New York Academy of Sciences.

[56]  D. F. Niven,et al.  The membrane potential as the driving force for the accumulation of lysine by Staphylococcus aureus , 1973, FEBS letters.

[57]  D. E. Atkinson,et al.  Adenylate Energy Charge in Escherichia coli During Growth and Starvation , 1971, Journal of bacteriology.

[58]  T. Theodore,et al.  Carbohydrate metabolism of iron-rich and iron-poor Staphylococcus aureus. , 1965, Journal of general microbiology.

[59]  U. Völker,et al.  Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon. , 2011, Metabolic engineering.