Robust Dual-Kernel Tracking Using Both Foreground and Background

The kernel-based mean shift tracker outperforms other trackers due to its innovated target representation and efficient optimization strategy. However, this representation relies overmuch on the foreground and thus, decreases the robustness to the background change and clutter. To this point, this paper presents a dual-kernel tracker based on mean shift using both foreground and background. The proposed target representation consists of foreground model and background model, and the optimizing process integrates foreground kernel iteration and background kernel iteration. Experiments indicate that the proposed tracker obtains better performance in coping with background change and clutter.

[1]  Ido Leichter,et al.  Mean Shift Trackers with Cross-Bin Metrics , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Peihua Li An Adaptive Binning Color Model for Mean Shift Tracking , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  Stanley T. Birchfield,et al.  Spatiograms versus histograms for region-based tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Qian Ma,et al.  Drift-correcting template update strategy for precision feature point tracking , 2010, Image Vis. Comput..

[5]  David Schreiber,et al.  Robust template tracking with drift correction , 2007, Pattern Recognit. Lett..

[6]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[8]  K. Dawson-Howe,et al.  Evaluation of Multi-part Models for Mean-Shift Tracking , 2008, 2008 International Machine Vision and Image Processing Conference.

[9]  Zhongliang Jing,et al.  Robust kernel-based tracking algorithm with background contrasting , 2012 .

[10]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..