Iteratively learning the ℌ∞-norm of multivariable systems applied to model-error-modeling of a vibration isolation system

The aim of this paper is to develop a new datadriven approach for learning the ℌ∞ -norm of multivariable systems that can be used for model-error-modeling in robust feedback control. The proposed algorithm only requires iterative experiments on the system. Especially for the multivariable situation that is considered in this paper, these experiments have to be judiciously chosen. The proposed algorithm delivers an estimate of the ℌ∞-norm of an unknown multivariable system, without the need or explicit construction of a (parametric or non-parametric) model. The results are experimentally demonstrated on model-error-modeling of a multivariable industrial active vibration isolation system. Finally, connections to learning control algorithms are established.

[1]  Emre Kural,et al.  96 A Survey of Iterative Learning Control Al earning-based method for high-performance tracking control , 2006 .

[2]  E. Rogers,et al.  Robustness analysis of an adjoint optimal iterative learning controller with experimental verification , 2008 .

[3]  Douwe K. de Vries,et al.  Quantification of model uncertainty from data , 1994 .

[4]  Kevin L. Moore,et al.  Iterative Learning Control: An Expository Overview , 1999 .

[5]  R. Tousain,et al.  Design strategy for iterative learning control based on optimal control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[6]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[7]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[8]  B. Pasik-Duncan Control-oriented system identification: An H∞ approach , 2002 .

[9]  Okko H. Bosgra,et al.  Multivariable feedback control design for high-precision wafer stage motion , 2002 .

[10]  G. Vinnicombe Uncertainty and Feedback: 8 loop-shaping and the-gap metric , 2000 .

[11]  Jian-Xin Xu,et al.  Iterative Learning Control , 1998 .

[12]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[13]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[14]  Zeungnam Bien,et al.  Iterative learning control: analysis, design, integration and applications , 1998 .

[15]  Pedro Albertos,et al.  Iterative Identification and Control , 2002, Springer London.

[16]  Okko H. Bosgra,et al.  System identification for achieving robust performance , 2012, Autom..

[17]  Dean Karnopp,et al.  Active and semi-active vibration isolation , 1995 .

[18]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[19]  Bo Wahlberg,et al.  Non-parametric methods for L2-gain estimation using iterative experiments , 2010, Autom..

[20]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[21]  Bo Wahlberg,et al.  Analyzing iterations in identification with application to nonparametric H∞-norm estimation , 2012, Autom..

[22]  Dimitry Gorinevsky,et al.  Distributed Loop-shaping for Iterative Control of Batch Processes , 2002 .

[23]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[24]  Bo Wahlberg,et al.  Gain estimation for Hammerstein systems , 2006 .

[25]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[26]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .