Cutting planes for RLT relaxations of mixed 0–1 polynomial programs

The reformulation–linearization technique, due to Sherali and Adams, can be used to construct hierarchies of linear programming relaxations of mixed 0–1 polynomial programs. As one moves up the hierarchy, the relaxations grow stronger, but the number of variables increases exponentially. We present a procedure that generates cutting planes at any given level of the hierarchy, by optimally weakening linear inequalities that are valid at any given higher level. Computational experiments, conducted on instances of the quadratic knapsack problem, indicate that the cutting planes can close a significant proportion of the integrality gap.

[1]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[2]  M. Minoux,et al.  Using rank-1 lift-and-project closures to generate cuts for 0-1 MIPs, a computational investigation , 2005, Discret. Optim..

[3]  Ulrich Faigle,et al.  A Lagrangian relaxation approach to the edge-weighted clique problem , 2001, Eur. J. Oper. Res..

[4]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[5]  Matthew J. Saltzman,et al.  A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem , 2012, INFORMS J. Comput..

[6]  Hanif D. Sherali,et al.  Tighter Representations for Set Partitioning Problems , 1996, Discret. Appl. Math..

[7]  Monique Guignard-Spielberg,et al.  A level-2 reformulation-linearization technique bound for the quadratic assignment problem , 2007, Eur. J. Oper. Res..

[8]  Yasutoshi Yajima,et al.  A Polyhedral Approach for Nonconvex Quadratic Programming Problems with Box Constraints , 1998, J. Glob. Optim..

[9]  Paolo Toth,et al.  Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..

[10]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[11]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[12]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[13]  R. Weismantel,et al.  A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..

[14]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[15]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[16]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[17]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[18]  F. B A R A H O N A,et al.  EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING , 2005 .

[19]  Alain Billionnet,et al.  Linear programming for the 0–1 quadratic knapsack problem , 1996 .

[20]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization: Theory, Methods and (NONCONVEX OPTIMIZATION AND ITS APPLICATIONS Volume 37) (Nonconvex Optimization and Its Applications) , 2005 .

[21]  Tomomi Matsui,et al.  A study of the quadratic semi-assignment polytope , 2009, Discret. Optim..

[22]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[23]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[24]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[25]  Hanif D. Sherali,et al.  RLT: A unified approach for discrete and continuous nonconvex optimization , 2007, Ann. Oper. Res..

[26]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[27]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[28]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[29]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .