Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography
暂无分享,去创建一个
Helle Majander | Stratos Staboulis | Nuutti Hyvonen | Nuutti Hyvonen | Helle Majander | Stratos Staboulis
[1] Liliana Borcea,et al. Electrical impedance tomography , 2002 .
[2] Tobin A. Driscoll,et al. Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996, TOMS.
[3] Gunther Uhlmann,et al. Electrical impedance tomography and Calderón's problem , 2009 .
[4] Min Chan Kim,et al. Two phase visualization by electrical impedance tomography with prior information , 2003 .
[5] D. Isaacson,et al. Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.
[6] Karen Willcox,et al. Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..
[7] Ville Kolehmainen,et al. The Inverse Conductivity Problem with an Imperfectly Known Boundary in Three Dimensions , 2007, SIAM J. Appl. Math..
[8] W R Breckon,et al. Data errors and reconstruction algorithms in electrical impedance tomography. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.
[9] Andreas Rieder,et al. Fine-tuning of the Complete Electrode Model , 2014 .
[10] C. Pommerenke. Boundary Behaviour of Conformal Maps , 1992 .
[11] Marko Vauhkonen,et al. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments , 2002 .
[12] B H Brown,et al. Errors in reconstruction of resistivity images using a linear reconstruction technique. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.
[13] Ville Kolehmainen,et al. The Inverse Conductivity Problem with an Imperfectly Known Boundary , 2005, SIAM J. Appl. Math..
[14] Harri Hakula,et al. Fine-tuning electrode information in electrical impedance tomography , 2012 .
[15] Bastian Harrach,et al. JUSTIFICATION OF POINT ELECTRODE MODELS IN ELECTRICAL IMPEDANCE TOMOGRAPHY , 2011 .
[16] Nuutti Hyvönen,et al. Fr[e-acute]chet Derivative with Respect to the Shape of an Internal Electrode in Electrical Impedance Tomography , 2010, SIAM J. Appl. Math..
[17] Nuutti Hyvönen,et al. Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation , 2013 .
[18] E. Somersalo,et al. Existence and uniqueness for electrode models for electric current computed tomography , 1992 .
[19] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[20] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[21] Jari P. Kaipio,et al. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory , 2002 .
[22] James Avery,et al. Correcting electrode modelling errors in EIT on realistic 3D head models , 2015, Physiological measurement.
[23] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[24] B. Brown,et al. Applied potential tomography. , 1989, Journal of the British Interplanetary Society.
[25] S. Staboulis,et al. Electrode modelling: The effect of contact impedance , 2013, 1312.4202.
[26] Jari P. Kaipio,et al. Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography , 2011, IEEE Transactions on Medical Imaging.
[27] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[28] Jérémi Dardé,et al. Simultaneous Reconstruction of Outer Boundary Shape and Admittivity Distribution in Electrical Impedance Tomography , 2012, SIAM J. Imaging Sci..
[29] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[30] Nuutti Hyvönen,et al. Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions , 2004, SIAM J. Appl. Math..
[31] J. Kaipio,et al. RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH , 2011 .
[32] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[33] Armin Lechleiter,et al. Newton regularizations for impedance tomography: a numerical study , 2006 .
[34] Marko Vauhkonen,et al. Suitability of a PXI platform for an electrical impedance tomography system , 2008 .
[35] J P Kaipio,et al. Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. , 1997, Physiological measurement.
[36] Marko Vauhkonen,et al. Electrical impedance tomography and prior information , 1997 .
[37] Andy Adler,et al. Shape Deformation in Two-Dimensional Electrical Impedance Tomography , 2012, IEEE Transactions on Medical Imaging.
[38] Andreas Rieder,et al. Resolution-Controlled Conductivity Discretization in Electrical Impedance Tomography , 2014, SIAM J. Imaging Sci..
[39] Jari P. Kaipio,et al. Sparsity reconstruction in electrical impedance tomography: An experimental evaluation , 2012, J. Comput. Appl. Math..