Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography

Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties that render reconstructing the internal conductivity impossible if they are not taken into account. This work numerically demonstrates that one can compensate for inaccurate modeling of the object boundary in two spatial dimensions by finding compatible locations and sizes for the electrodes as a part of a reconstruction algorithm. The numerical studies, which are based on both simulated and experimental data, are complemented by proving that the employed complete electrode model is approximately conformally invariant, which suggests that the obtained reconstructions in mismodeled domains reflect conformal images of the true targets. The numerical experiments also confirm that a similar approach does not, in general, lead to a functional algorithm in three dimensions.

[1]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[2]  Tobin A. Driscoll,et al.  Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996, TOMS.

[3]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[4]  Min Chan Kim,et al.  Two phase visualization by electrical impedance tomography with prior information , 2003 .

[5]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[6]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[7]  Ville Kolehmainen,et al.  The Inverse Conductivity Problem with an Imperfectly Known Boundary in Three Dimensions , 2007, SIAM J. Appl. Math..

[8]  W R Breckon,et al.  Data errors and reconstruction algorithms in electrical impedance tomography. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[9]  Andreas Rieder,et al.  Fine-tuning of the Complete Electrode Model , 2014 .

[10]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[11]  Marko Vauhkonen,et al.  Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments , 2002 .

[12]  B H Brown,et al.  Errors in reconstruction of resistivity images using a linear reconstruction technique. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[13]  Ville Kolehmainen,et al.  The Inverse Conductivity Problem with an Imperfectly Known Boundary , 2005, SIAM J. Appl. Math..

[14]  Harri Hakula,et al.  Fine-tuning electrode information in electrical impedance tomography , 2012 .

[15]  Bastian Harrach,et al.  JUSTIFICATION OF POINT ELECTRODE MODELS IN ELECTRICAL IMPEDANCE TOMOGRAPHY , 2011 .

[16]  Nuutti Hyvönen,et al.  Fr[e-acute]chet Derivative with Respect to the Shape of an Internal Electrode in Electrical Impedance Tomography , 2010, SIAM J. Appl. Math..

[17]  Nuutti Hyvönen,et al.  Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation , 2013 .

[18]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[19]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[20]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[21]  Jari P. Kaipio,et al.  Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory , 2002 .

[22]  James Avery,et al.  Correcting electrode modelling errors in EIT on realistic 3D head models , 2015, Physiological measurement.

[23]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[24]  B. Brown,et al.  Applied potential tomography. , 1989, Journal of the British Interplanetary Society.

[25]  S. Staboulis,et al.  Electrode modelling: The effect of contact impedance , 2013, 1312.4202.

[26]  Jari P. Kaipio,et al.  Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography , 2011, IEEE Transactions on Medical Imaging.

[27]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[28]  Jérémi Dardé,et al.  Simultaneous Reconstruction of Outer Boundary Shape and Admittivity Distribution in Electrical Impedance Tomography , 2012, SIAM J. Imaging Sci..

[29]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[30]  Nuutti Hyvönen,et al.  Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions , 2004, SIAM J. Appl. Math..

[31]  J. Kaipio,et al.  RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH , 2011 .

[32]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[33]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: a numerical study , 2006 .

[34]  Marko Vauhkonen,et al.  Suitability of a PXI platform for an electrical impedance tomography system , 2008 .

[35]  J P Kaipio,et al.  Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. , 1997, Physiological measurement.

[36]  Marko Vauhkonen,et al.  Electrical impedance tomography and prior information , 1997 .

[37]  Andy Adler,et al.  Shape Deformation in Two-Dimensional Electrical Impedance Tomography , 2012, IEEE Transactions on Medical Imaging.

[38]  Andreas Rieder,et al.  Resolution-Controlled Conductivity Discretization in Electrical Impedance Tomography , 2014, SIAM J. Imaging Sci..

[39]  Jari P. Kaipio,et al.  Sparsity reconstruction in electrical impedance tomography: An experimental evaluation , 2012, J. Comput. Appl. Math..