Stock market volatility: Identifying major drivers and the nature of their impact

Financial-market risk, commonly measured in terms of asset-return volatility, plays a fundamental role in investment decisions, risk management and regulation. In this paper, we investigate a new modeling strategy that helps to better understand the forces that drive market risk. We use componentwise gradient boosting techniques to identify financial and macroeconomic factors influencing volatility and to assess the specific nature of their influence. Componentwise boosting is capable of producing parsimonious models from a, possibly, large number of predictors and—in contrast to other related techniques—allows a straightforward interpretation of the parameter estimates.

[1]  Gerhard Tutz,et al.  Boosting techniques for nonlinear time series models , 2012 .

[2]  Ľuboš Pástor,et al.  Liquidity Risk and Expected Stock Returns , 2003, Journal of Political Economy.

[3]  Charlotte Christiansen,et al.  A comprehensive look at financial volatility prediction by economic variables: FINANCIAL VOLATILITY PREDICTION BY ECONOMIC VARIABLES , 2012 .

[4]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[5]  Leslie G. Valiant,et al.  Cryptographic limitations on learning Boolean formulae and finite automata , 1994, JACM.

[6]  Torsten Hothorn,et al.  Model-based Boosting 2.0 , 2010, J. Mach. Learn. Res..

[7]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[8]  Lukas Menkhoff,et al.  Carry Trades and Global Foreign Exchange Volatility , 2011 .

[9]  Charlotte Christiansen,et al.  A Comprehensive Look at Financial Volatility Prediction by Economic Variables , 2011 .

[10]  S. Mittnik,et al.  Overleveraging, Financial Fragility and the Banking-Macro Link: Theory and Empirical Evidence , 2014 .

[11]  Serena Ng,et al.  Boosting diffusion indices , 2009 .

[12]  Yisong S. Tian,et al.  The Model-Free Implied Volatility and Its Information Content , 2005 .

[13]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[14]  K. West,et al.  The Predictive Ability of Several Models of Exchange Rate Volatility , 1994 .

[15]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[16]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[17]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[18]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[19]  Markus K. Brunnermeier Deciphering the Liquidity and Credit Crunch 2007-08 , 2008 .

[20]  P. Bühlmann,et al.  Volatility estimation with functional gradient descent for very high-dimensional financial time series , 2003 .

[21]  B. Peter BOOSTING FOR HIGH-DIMENSIONAL LINEAR MODELS , 2006 .

[22]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[23]  Stefan Mittnik,et al.  Forecasting stock market volatility and the informational efficiency of the DAX-index options market , 2002 .

[24]  P. Bühlmann,et al.  Boosting With the L2 Loss , 2003 .

[25]  M. Flannery,et al.  Macroeconomic FactorsDoInfluence Aggregate Stock Returns , 2002 .

[26]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[27]  Bradley S. Paye,et al.  Deja Vol: Predictive Regressions for Aggregate Stock Market Volatility Using Macroeconomic Variables , 2011 .

[28]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[29]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[30]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[31]  M. Flannery,et al.  Macroeconomic Factors Do Influence Aggregate Stock Returns , 2002 .

[32]  P. Bühlmann,et al.  Splines for financial volatility , 2007 .

[33]  F. Diebold,et al.  How Relevant is Volatility Forecasting for Financial Risk Management? , 1997 .

[34]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[35]  M. Schmid,et al.  The Importance of Knowing When to Stop , 2012, Methods of Information in Medicine.

[36]  N. Prabhala,et al.  The relation between implied and realized volatility , 1998 .

[37]  Peter Buhlmann,et al.  BOOSTING ALGORITHMS: REGULARIZATION, PREDICTION AND MODEL FITTING , 2007, 0804.2752.

[38]  P. Bühlmann Boosting for high-dimensional linear models , 2006 .

[39]  Thomas H. McCurdy,et al.  Nonlinear Features of Realized FX Volatility , 2001 .

[40]  K. French,et al.  Expected stock returns and volatility , 1987 .

[41]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[42]  Stephen Figlewski,et al.  The Informational Content of Implied Volatility , 1993 .

[43]  Eric Ghysels,et al.  Stock Market Volatility and Macroeconomic Fundamentals , 2013, Review of Economics and Statistics.

[44]  N. Shephard,et al.  Stochastic Volatility: Origins and Overview , 2008 .

[45]  N. Roussanov,et al.  Common Risk Factors in Currency Markets , 2008 .

[46]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[47]  Dick van Dijk,et al.  Testing for Volatility Changes in U.S. Macroeconomic Time Series , 2004, Review of Economics and Statistics.

[48]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[49]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[50]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[51]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[52]  Marcel Prokopczuk,et al.  The Importance of the Volatility Risk Premium for Volatility Forecasting , 2013 .

[53]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[54]  José M. Matías,et al.  Boosting GARCH and neural networks for the prediction of heteroskedastic time series , 2010, Math. Comput. Model..

[55]  R. Engle,et al.  The Spline-Garch Model for Low Frequency Volatility and its Global Macroeconomic Causes , 2006 .

[56]  J. Cochrane,et al.  Bond Risk Premia , 2002 .