Experimental identification of quantum spin liquids

[1]  A. Vishwanath,et al.  Non-Coplanar and Counter-Rotating Incommensurate Magnetic Order Stabilized by Kitaev Interactions in γ-Li2IrO3 , 2021 .

[2]  J. Wen,et al.  Recent progress on magnetic-field studies on quantum-spin-liquid candidates , 2018, Chinese Physics B.

[3]  Y. Motome,et al.  Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid , 2018, Nature.

[4]  T. Terashima,et al.  Spin-lattice decoupling in a triangular-lattice quantum spin liquid , 2018, Nature Communications.

[5]  A. Vasiliev,et al.  Milestones of low-D quantum magnetism , 2018 .

[6]  G. Jackeli,et al.  A spin–orbital-entangled quantum liquid on a honeycomb lattice , 2018, Nature.

[7]  I. Terasaki,et al.  Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10–d0 cation mixing , 2018, Nature Communications.

[8]  L. Balents,et al.  Finite-temperature behavior of a classical spin-orbit-coupled model for YbMgGaO 4 with and without bond disorder , 2018, 1801.06941.

[9]  G. Khaliullin,et al.  Pseudospin exchange interactions in d 7 cobalt compounds: Possible realization of the Kitaev model , 2017, 1710.10193.

[10]  Zheng Zhu,et al.  Robust non-Abelian spin liquid and a possible intermediate phase in the antiferromagnetic Kitaev model with magnetic field , 2017, Physical Review B.

[11]  A. Nahum,et al.  Valence Bonds in Random Quantum Magnets: Theory and Application to , 2018 .

[12]  Weiqi Wang,et al.  Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO_{4}. , 2017, Physical review letters.

[13]  T. Hong,et al.  Hierarchy of Exchange Interactions in the Triangular-Lattice Spin Liquid YbMgGaO4 , 2017, Physical Review X.

[14]  V. Sidorov,et al.  Pressure-induced melting of magnetic order and emergence of a new quantum state in α−RuCl3 , 2017, Physical Review B.

[15]  J. Knolle,et al.  Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections , 2017, 1705.01740.

[16]  C. Baines,et al.  Gapless excitations in the ground state of 1T-TaS2 , 2017, 1709.09440.

[17]  Sang-Youn Park,et al.  Majorana fermions in the Kitaev quantum spin system α-RuCl3 , 2017, Nature Physics.

[18]  K. Krämer,et al.  2 1 A ug 2 01 7 Observation of two types of anyons in the Kitaev honeycomb magnet , 2017 .

[19]  S. Cheong,et al.  Heat transport study of the spin liquid candidate 1T-TaS2 , 2017, 1706.08558.

[20]  A. Savici,et al.  Excitations in the field-induced quantum spin liquid state of α-RuCl3 , 2017, 1706.07003.

[21]  J. van den Brink,et al.  Models and materials for generalized Kitaev magnetism , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  M. Vojta,et al.  Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for α − RuCl 3 and Na 2 IrO 3 , 2017, 1706.05380.

[23]  S. Cheong,et al.  The low-temperature highly correlated quantum phase in the charge-density-wave 1T-TaS2 compound , 2017, 1706.04735.

[24]  A. Banerjee,et al.  Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.

[25]  Wenan Guo,et al.  High-pressure magnetization and NMR studies of α − RuCl 3 , 2017, 1706.02697.

[26]  D. Mihailovic,et al.  A high-temperature quantum spin liquid with polaron spins , 2017, Nature Physics.

[27]  K. T. Law,et al.  Is 1T-TaS$_2$ a 40 year old quantum spin liquid? , 2017, 1704.06157.

[28]  Xiaoqun Wang,et al.  Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice , 2017, 1703.07202.

[29]  S. White,et al.  Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO_{4}. , 2017, Physical review letters.

[30]  S. Danilkin,et al.  Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α-RuCl_{3}. , 2017, Physical review letters.

[31]  D. Adroja,et al.  Crystalline Electric-Field Randomness in the Triangular Lattice Spin-Liquid YbMgGaO_{4}. , 2017, Physical review letters.

[32]  Feng Liu,et al.  Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu3Zn(OH)6FBr* , 2017, 1702.01658.

[33]  Zhao-Yang Dong,et al.  Theoretical investigation of magnetic dynamics in α − RuCl 3 , 2016, 1612.09515.

[34]  J Chen,et al.  Gapless Spin-Liquid Ground State in the S=1/2 Kagome Antiferromagnet. , 2016, Physical review letters.

[35]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[36]  M. Viaud,et al.  Evidence for a spinon Fermi surface in the triangular S =1 quantum spin liquid Ba 3 NiSb 2 O 9 , 2016, 1610.03753.

[37]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[38]  G. Ehlers,et al.  Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4 , 2016, Nature Physics.

[39]  Huan He,et al.  Gapped spin liquid with Z 2 topological order for the kagome Heisenberg model , 2016, 1606.09639.

[40]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[41]  Junge Zhang,et al.  Absence of Magnetic Thermal Conductivity in the Quantum Spin-Liquid Candidate YbMgGaO_{4}. , 2016, Physical review letters.

[42]  T. McQueen,et al.  Electron Doping a Kagome Spin Liquid , 2016, 1610.04632.

[43]  A. Banerjee,et al.  Neutron tomography of magnetic Majorana fermions in a proximate quantum spin liquid , 2016, 1609.00103.

[44]  Qian Zhang,et al.  Muon Spin Relaxation Evidence for the U(1) Quantum Spin-Liquid Ground State in the Triangular Antiferromagnet YbMgGaO_{4}. , 2016, Physical review letters.

[45]  M. Frontzek,et al.  Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate , 2016, Nature.

[46]  J. Rodriguez-Rivera,et al.  Physical realization of a quantum spin liquid based on a complex frustration mechanism , 2016, Nature Physics.

[47]  H. Kee,et al.  Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials , 2015, 1507.06323.

[48]  A. Banerjee,et al.  Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. , 2015, Nature materials.

[49]  Baines,et al.  Short-Range Correlations in the Magnetic Ground State of Na4Ir3O8 , 2016 .

[50]  Qing-ming Zhang,et al.  Gapless quantum spin liquid ground state behavior in the rare-earth triangular antiferromagnet YbMgGaO 4 , 2016 .

[51]  T. Han,et al.  Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet , 2015, Science.

[52]  Xiaoqun Wang,et al.  Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of YbMgGaO4. , 2015, Physical review letters.

[53]  X. Wen,et al.  Fractionalized spin-wave continuum in spin liquid states on the kagome lattice , 2015, 1507.03007.

[54]  L. Pi,et al.  Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4 , 2015, Scientific Reports.

[55]  P. Mendels,et al.  Frozen State and Spin Liquid Physics in Na_{4}Ir_{3}O_{8}: An NMR Study. , 2015, Physical review letters.

[56]  Y. Narumi,et al.  Successive magnetic phase transitions in α − RuCl 3 : XY-like frustrated magnet on the honeycomb lattice , 2015, 1503.03591.

[57]  Stephen D. Wilson,et al.  Short-range correlations in the magnetic ground state of $Na_{4} Ir_{3} O_{8} $ , 2015 .

[58]  T. Perring,et al.  Fractional excitations in the square lattice quantum antiferromagnet , 2014, Nature Physics.

[59]  Yang Zhao,et al.  Magnetic order in α -RuCl 3 : A honeycomb-lattice quantum magnet with strong spin-orbit coupling , 2014, 1411.4610.

[60]  Stephen D. Wilson,et al.  Short-range correlations in the magnetic ground state of Na₄Ir₃O₈. , 2014, Physical review letters.

[61]  A. Bombardi,et al.  Unconventional magnetic order on the hyperhoneycomb Kitaev lattice inβ−Li2IrO3: Full solution via magnetic resonant x-ray diffraction , 2014, 1408.0246.

[62]  M. Baenitz,et al.  Magnetic properties and heat capacity of the three-dimensional frustrated S=1/2 antiferromagnet PbCuTe2O6 , 2014, 1409.8408.

[63]  A. Vishwanath,et al.  Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li(2)IrO(3). , 2014, Physical review letters.

[64]  Y. Motome,et al.  Vaporization of Kitaev spin liquids. , 2014, Physical review letters.

[65]  H. Kee,et al.  α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice , 2014, 1403.0883.

[66]  Masashi Kawasaki,et al.  Field-Induced Superconductivity in Electric Double Layer Transistors , 2014 .

[67]  H. Kee,et al.  Generic spin model for the honeycomb iridates beyond the Kitaev limit. , 2013, Physical review letters.

[68]  Yong Baek Kim,et al.  Correlated Quantum Phenomena in the Strong Spin-Orbit Regime , 2013, 1305.2193.

[69]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[70]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[71]  Yogesh Singh,et al.  Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. , 2011, Physical review letters.

[72]  Takashi Yamamoto,et al.  Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements , 2011, Nature communications.

[73]  D. Nocera,et al.  Site Specific X‐Ray Anomalous Dispersion of the Geometrically Frustrated Kagome Magnet, Herbertsmithite, ZnCu3(OH)6Cl2. , 2011 .

[74]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[75]  Ross H. McKenzie,et al.  Quantum frustration in organic Mott insulators: from spin liquids to unconventional superconductors , 2010, 1007.5381.

[76]  S. Hayden,et al.  Anomalous high-energy spin excitations in the high-Tc superconductor-parent antiferromagnet La₂CuO₄. , 2010, Physical review letters.

[77]  D. Nocera,et al.  Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu(3)(OH)(6)Cl(2). , 2010, Journal of the American Chemical Society.

[78]  S. Maegawa,et al.  Instability of a quantum spin liquid in an organic triangular-lattice antiferromagnet , 2010 .

[79]  Yuji Matsuda,et al.  Highly Mobile Gapless Excitations in a Two-Dimensional Candidate Quantum Spin Liquid , 2010, Science.

[80]  Y. Singh,et al.  Antiferromagnetic Mott insulating state in single crystals of the hexagonal lattice material Na2IrO3 , 2010, 1006.0437.

[81]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[82]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[83]  H. Takagi Spin Liquid State of in the $S=1/2$ Hyper-kagome Antiferromagnet Na$_{4}$Ir$_{3}$O$_{8}$ , 2009 .

[84]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[85]  S. Fujimoto,et al.  Thermal-transport measurements in a quantum spin-liquid state of the frustrated triangular magnet -(BEDT-TTF) 2 Cu 2 (CN) 3 , 2009 .

[86]  Y. Shimizu,et al.  Thermodynamic properties of a spin-1/2 spin-liquid state in a κ -type organic salt , 2008 .

[87]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[88]  H. Takagi,et al.  Spin-liquid state in the S=1/2 hyperkagome antiferromagnet Na4Ir3O8. , 2007, Physical review letters.

[89]  Ying Ran,et al.  Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé lattice. , 2006, Physical review letters.

[90]  Y. Shimizu,et al.  Emergence of inhomogeneous moments from spin liquid in the triangular-lattice Mott insulator κ − ( ET ) 2 Cu 2 ( CN ) 3 , 2006, cond-mat/0604650.

[91]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[92]  D. Nocera,et al.  A structurally perfect S = (1/2) kagomé antiferromagnet. , 2005, Journal of the American Chemical Society.

[93]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[94]  M. Fisher,et al.  On the stability of U(1) spin liquids in two dimensions , 2004, cond-mat/0404751.

[95]  Y. Shimizu,et al.  Spin liquid state in an organic Mott insulator with a triangular lattice. , 2003, Physical review letters.

[96]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[97]  M. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[98]  F. Mila Quantum spin liquids , 2000 .

[99]  C. Lhuillier,et al.  Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice. , 1994, Physical review. B, Condensed matter.

[100]  K. A. Müller,et al.  Possible High T cSuperconductivity in the Ba — La — Cu — O System , 1993 .

[101]  Sachdev,et al.  Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. , 1992, Physical review. B, Condensed matter.

[102]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[103]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[104]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[105]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[106]  W. E. Gardner,et al.  Anhydrous Ruthenium Chlorides , 1963, Nature.