Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene

[1]  Shaomin Liu,et al.  Nature of Intrinsic Defects in Carbon Materials for Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene , 2021, ACS Catalysis.

[2]  J. Niu,et al.  Elucidating the Role of Single-Atom Pd for Electrocatalytic Hydrodechlorination. , 2021, Environmental science & technology.

[3]  Hailiang Wang,et al.  Direct electrosynthesis of methylamine from carbon dioxide and nitrate , 2021, Nature Sustainability.

[4]  A. Lashgari,et al.  Electrocatalytic Dechlorination of Dichloromethane in Water Using a Heterogenized Molecular Copper Complex. , 2021, Inorganic Chemistry.

[5]  M. Elimelech,et al.  Electrified Membranes for Water Treatment Applications , 2021 .

[6]  J. Fortner,et al.  A graphene oxide Cookbook: Exploring chemical and colloidal properties as a function of synthesis parameters. , 2020, Journal of colloid and interface science.

[7]  Shaomin Liu,et al.  Manganese-Based Spinel Core–Shell Nanostructures for Efficient Electrocatalysis of 1,2-Dichloroethane , 2020 .

[8]  A. Lashgari,et al.  Hydrodechlorination of Dichloromethane by a Metal-Free Triazole-Porphyrin Electrocatalyst: Demonstration of Main-Group Element Electrocatalysis. , 2020, Chemistry.

[9]  Xinyong Li,et al.  Active Sites in Single-Atom Fe-Nx-C Nanosheets for Selectively Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene. , 2020, ACS nano.

[10]  Aicheng Chen,et al.  Identification of Catalytic Active Sites in Nitrogen-Doped Carbon for Electrocatalytic Dechlorination of 1,2-Dichloroethane , 2019, ACS Catalysis.

[11]  Hailiang Wang,et al.  Domino electroreduction of CO2 to methanol on a molecular catalyst , 2019, Nature.

[12]  T. Jaramillo,et al.  What would it take for renewably powered electrosynthesis to displace petrochemical processes? , 2019, Science.

[13]  W. Goddard,et al.  Reaction Mechanism for the Hydrogen Evolution Reaction on the Basal Plane Sulfur Vacancy Site of MoS2 Using Grand Canonical Potential Kinetics. , 2018, Journal of the American Chemical Society.

[14]  James Sherwood European Restrictions on 1,2-Dichloroethane: C-H Activation Research and Development Should Be Liberated and not Limited. , 2018, Angewandte Chemie.

[15]  A. Koca,et al.  Metallophthalocyanines Bearing Polymerizable {[5‐({(1E)‐[4‐(Diethylamino)phenyl]methylene}amino)‐ 1‐naphthy1]oxy} Groups as Electrochemical Pesticide Sensor , 2017 .

[16]  Kathleen A. Schwarz,et al.  JDFTx: Software for joint density-functional theory , 2017, SoftwareX.

[17]  Hailiang Wang,et al.  Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures , 2017, Nature Communications.

[18]  W. Gong,et al.  Ligand-enabled meta-C–H activation using a transient mediator , 2015, Nature.

[19]  Zhipan Liu,et al.  Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles , 2014 .

[20]  Ravishankar Sundararaman,et al.  The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. , 2014, The Journal of chemical physics.

[21]  Kendra Letchworth-Weaver,et al.  Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. , 2013, The Journal of chemical physics.

[22]  Jing Zhang,et al.  Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences , 2013 .

[23]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[24]  Xi Ling,et al.  Graphene‐Veiled Gold Substrate for Surface‐Enhanced Raman Spectroscopy , 2013, Advanced materials.

[25]  T. Mei,et al.  Activation of remote meta-C–H bonds assisted by an end-on template , 2012, Nature.

[26]  Tom Regier,et al.  An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials , 2012, Nature Communications.

[27]  A. Alshawabkeh,et al.  Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media. , 2011, Environmental science & technology.

[28]  W. D. de Vos,et al.  Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. , 2009, Water research.

[29]  Robert J. Phipps,et al.  A Meta-Selective Copper-Catalyzed C–H Bond Arylation , 2009, Science.

[30]  A. Özkaya,et al.  Synthesis and electrochemistry of tetrakis(7-coumarinthio-4-methyl)-phthalocyanines, and preparation of their cinnamic acid and sodium cinnamate derivatives , 2009 .

[31]  O. Scialdone,et al.  Electrochemical incineration of 1,2-dichloroethane: Effect of the electrode material , 2008 .

[32]  C. Cramer,et al.  Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. , 2007, The journal of physical chemistry. B.

[33]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. , 2006, The Journal of chemical physics.

[34]  J. Field,et al.  Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds , 2004 .

[35]  Y. Hori,et al.  Electrochemical dechlorination of chlorinated hydrocarbons: Electrochemical reduction of chloroform in acetonitrile/water mixtures at high current density , 2003 .

[36]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[37]  N. Sonoyama,et al.  Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode , 1999 .

[38]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[39]  Gustafsson,et al.  Isotope shift in the electron affinity of chlorine. , 1998, Physical review. A, Atomic, molecular, and optical physics.

[40]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998, cond-mat/9804226.

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  P. Capel,et al.  A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time , 1995 .

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[46]  P L McCarty,et al.  ES Critical Reviews: Transformations of halogenated aliphatic compounds. , 1987, Environmental science & technology.

[47]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[48]  K. Wiberg,et al.  The Deuterium Isotope Effect , 1955 .

[49]  S. Nešić,et al.  Mechanism of the Hydrogen Evolution Reaction in Mildly Acidic Environments on Gold , 2017 .

[50]  Eila,et al.  Graphene Oxide Synthesized by using Modified Hummers Approach , 2014 .

[51]  L. Gurreri,et al.  Electrochemical abatement of chloroethanes in water: Reduction, oxidation and combined processes , 2010 .

[52]  Michigan.,et al.  Toxicological profile for dichloropropenes , 2008 .

[53]  Michael H. Abraham,et al.  Thermodynamics of solute transfer from water to hexadecane , 1990 .