A stabilized finite element method for advection-diffusion equations on surfaces

A recently developed Eulerian finite element method is applied to solve advectiondiffusion equations posed on hypersurfaces. When transport processes on a surface dominate over diffusion, finite element methods tend to be unstable unless the mesh is sufficiently fine. The paper introduces a stabilized finite element formulation based on the SUPG technique. An error analysis of the method is given. Results of numerical experiments are presented that illustrate the performance of the stabilized method.

[1]  Maxim A. Olshanskii,et al.  An Adaptive Surface Finite Element Method Based on Volume Meshes , 2012, SIAM J. Numer. Anal..

[2]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[3]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[4]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[5]  A. Reusken,et al.  AN EULERIAN FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON MOVING SURFACES , 2008 .

[6]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[7]  J. Berg,et al.  Surface Diffusion in Monomolecular Films(II) , 1972 .

[8]  M. Bloor,et al.  Applications of functional analysis , 2013 .

[9]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[10]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[11]  S. L. Sobolev,et al.  Some Applications of Functional Analysis in Mathematical Physics , 1991 .

[12]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[13]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[14]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[15]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[16]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[17]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..