A particle-particle, particle-density algorithm for the calculation of electrostatic interactions of particles with slablike geometry.

We present a fast and accurate method to calculate the electrostatic energy and forces of interacting particles with the boundary conditions appropriate to surfaces, i.e., periodic in the two directions parallel to the surface and free in the perpendicular direction. In the spirit of the Ewald method, the problem is divided into a short range and a long range part. The charge density responsible for the long range part is represented by plane waves in the periodic directions and by finite elements in the nonperiodic direction. Our method has computational complexity of O(N(g) log(N(g))) with a very small prefactor, where N(g) is the number of grid points.

[1]  Albert H. Widmann,et al.  A comparison of Ewald summation techniques for planar surfaces , 1997 .

[2]  Joseph E. Flaherty,et al.  High-Order Finite Element Methods for Singularly Perturbed Elliptic and Parabolic Problems , 1995, SIAM J. Appl. Math..

[3]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[4]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[5]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form☆ , 1964 .

[6]  J. Perram,et al.  Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems , 1992 .

[7]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[8]  Jim Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1996 .

[9]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[10]  Axel Arnold,et al.  MMM2D: A fast and accurate summation method for electrostatic interactions in 2D slab geometries , 2002 .

[11]  Eckhard Spohr,et al.  Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions , 1997 .

[12]  Physics of solid and liquid alkali halide surfaces near the melting point. , 2005, The Journal of chemical physics.

[13]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[14]  A. Bródka Errors in the Ewald summation method with electrostatic layer correction for Coulomb interactions in slab geometry , 2005 .

[15]  Axel Arnold,et al.  Electrostatics in periodic slab geometries. II , 2002 .

[16]  M. Berkowitz,et al.  Ewald summation for systems with slab geometry , 1999 .

[17]  John Lekner,et al.  Summation of Coulomb fields in computer-simulated disordered systems , 1991 .

[18]  M. Klein,et al.  An Ewald summation method for planar surfaces and interfaces , 1992 .

[19]  Stefan Goedecker,et al.  Efficient and accurate three-dimensional Poisson solver for surface problems. , 2007, The Journal of chemical physics.

[20]  R. Strebel,et al.  An Alternative to Ewald Sums. Part 3: Implementation and Results , 2001 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  R. Sperb,et al.  An Alternative to Ewald Sums part I: Identities for Sums , 1998 .

[23]  Rahman,et al.  Ewald methods in molecular dynamics for systems of finite extent in one of three dimensions. , 1989, Physical review. B, Condensed matter.

[24]  D. Heyes,et al.  Molecular dynamics computer simulation of surface properties of crystalline potassium chloride , 1977 .

[25]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[26]  Stefan Goedecker,et al.  Particle-particle, particle-scaling function algorithm for electrostatic problems in free boundary conditions. , 2007, The Journal of chemical physics.

[27]  B. M. Fulk MATH , 1992 .

[28]  Martin Head-Gordon,et al.  PERIODIC BOUNDARY CONDITIONS AND THE FAST MULTIPOLE METHOD , 1997 .

[29]  B. Nijboer On the electrostatic potential due to a slab shaped and a semi-infinite NaCl-type lattice , 1984 .