Numerical analysis of apodized fiber Bragg gratings formation using phase mask with variable diffraction efficiency

Scalar diffraction theory is applied to analyze the intensity distribution in the fiber core during fiber Bragg grating (FBG) fabrication using an apodized phase mask. The averaged diffraction field distribution in fiber core was calculated as a function of optical fiber position. The results show that in a case of apodized FBGs fabrication, averaged field intensity profile, and thus refractive index changes in fiber core have complex form. Moreover, it was shown that the influence of optical fiber position behind the phase mask on average intensity distribution in fiber core decreases with increasing of its diameter.