A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions

In this paper, a compact finite difference scheme with global convergence order $$O\big (\tau ^{2-\alpha }+h^4\big )$$O(τ2-α+h4) is derived for fractional sub-diffusion equations with the spatially variable coefficient subject to Neumann boundary conditions. The difficulty caused by the variable coefficient and the Neumann boundary conditions is overcome by subtle decomposition of the coefficient matrices. The stability and convergence of the proposed scheme are studied using its matrix form by the energy method. The theoretical results are supported by numerical experiments.

[1]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[2]  Semyon Tsynkov,et al.  A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates , 2010, J. Sci. Comput..

[3]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[4]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[5]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[6]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[7]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[8]  M. Lai,et al.  A fast iterative solver for the variable coefficient diffusion equation on a disk , 2005 .

[9]  I. Podlubny Fractional differential equations , 1998 .

[10]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[11]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[12]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[13]  Mehdi Dehghan,et al.  A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, J. Comput. Phys..

[14]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[15]  Zhibo Wang,et al.  A high-order exponential ADI scheme for two dimensional time fractional convection-diffusion equations , 2014, Comput. Math. Appl..

[16]  Seakweng Vong,et al.  High order difference schemes for a time fractional differential equation with Neumann boundary conditions , 2013, 1311.5641.

[17]  Semyon Tsynkov,et al.  The Method of Difference Potentials for the Helmholtz Equation Using Compact High Order Schemes , 2012, Journal of Scientific Computing.

[18]  Xuan Zhao,et al.  Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..

[19]  Zhibo Wang,et al.  A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions , 2014, J. Comput. Phys..

[20]  Mingrong Cui,et al.  Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients , 2015, J. Comput. Phys..

[21]  J. Knight,et al.  Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions , 1999 .

[22]  Qinwu Xu,et al.  Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient , 2014 .

[23]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[24]  Zhibo Wang,et al.  A high order compact finite difference scheme for time fractional Fokker-Planck equations , 2015, Appl. Math. Lett..

[25]  Mingrong Cui Combined compact difference scheme for the time fractional convection-diffusion equation with variable coefficients , 2014, Appl. Math. Comput..

[26]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[27]  Mostafa Abbaszadeh,et al.  A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, Comput. Math. Appl..

[28]  Mostafa Abbaszadeh,et al.  Compact finite difference scheme for the solution of time fractional advection-dispersion equation , 2012, Numerical Algorithms.

[29]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[30]  Zhi-zhong Sun,et al.  An unconditionally stable and O(τ2 + h4) order L∞ convergent difference scheme for linear parabolic equations with variable coefficients , 2001 .

[31]  Seakweng Vong,et al.  A high‐order compact scheme for the nonlinear fractional Klein–Gordon equation , 2015 .

[32]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[33]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..