Lifetime estimation in the low/medium-cycle regime using the Carpinteri–Spagnoli multiaxial fatigue criterion

Abstract A critical plane-based high-cycle multiaxial fatigue criterion, known as the Carpinteri–Spagnoli (C–S) criterion, is here extended to evaluate the fatigue lifetime of plain metallic components under constant amplitude loading in the low/medium-cycle regime. This extended criterion, based on strain components, resolves the strain tensor into the normal and shear components acting on the critical plane, which is determined on the basis of the principal strain courses over the loading cycle. An equivalent normal strain amplitude, computed through a quadratic combinations of strain components in the critical plane, is taken as the fatigue damage parameter. The required input parameters of the criterion are obtained from the classical Manson–Coffin–Basquin law for axial loading. A validation by experimental data pertaining the biaxial fatigue of plain steel specimens under both proportional and non-proportional loadings is performed.

[1]  Yanyao Jiang,et al.  An experimental evaluation of three critical plane multiaxial fatigue criteria , 2007 .

[2]  Andrea Carpinteri,et al.  Multiaxial fatigue life estimation in welded joints using the critical plane approach , 2009 .

[3]  A. Carpinteri,et al.  Structural integrity assessment of metallic components under multiaxial fatigue: the C–S criterion and its evolution , 2012 .

[4]  Carpinteri,et al.  A fracture plane approach in multiaxial high‐cycle fatigue of metals , 2000 .

[5]  David Taylor,et al.  An Elasto-Plastic Reformulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components Failing in the Low/Medium-Cycle Fatigue Regime , 2010 .

[6]  M. Freitas,et al.  Crack path evaluation on HC and BCC microstructures under multiaxial cyclic loading , 2014 .

[7]  M. Freitas,et al.  New approach for analysis of complex multiaxial loading paths , 2014 .

[8]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[9]  Fernand Ellyin,et al.  Multiaxial Fatigue Damage Criterion , 1988 .

[10]  A. Karolczuk Non-local area approach to fatigue life evaluation under combined reversed bending and torsion , 2008 .

[11]  Andrea Spagnoli,et al.  A new high-cycle fatigue criterion applied to out-of-phase biaxial stress state , 2001 .

[12]  Mácha,et al.  Energy criteria of multiaxial fatigue failure , 1999 .

[13]  V. Shlyannikov,et al.  Fracture analysis of turbine disks and computational–experimental background of the operational decisions , 2001 .

[14]  V. Shlyannikov,et al.  Characterization of crack tip stress fields in test specimens using mode mixity parameters , 2013, International Journal of Fracture.

[15]  Michael Vormwald,et al.  Deformation behaviour, short crack growth and fatigue livesunder multiaxial nonproportional loading , 2006 .

[16]  José Alexander Araújo,et al.  Multiaxial fatigue life estimation based on a piecewise ruled S-N surface , 2011 .

[17]  Aleksander Karolczuk,et al.  Critical Planes in Multiaxial Fatigue , 2005 .

[18]  Hamid Jahed,et al.  Multiaxial effects on LCF behaviour and fatigue failure of AZ31B magnesium extrusion , 2014 .

[19]  Andrea Carpinteri,et al.  Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method , 1999 .

[20]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[21]  E. N. Mamiya,et al.  Using enclosing ellipsoids in multiaxial fatigue strength criteria , 2006 .

[22]  I. Papadopoulos,et al.  Critical plane approaches in high-cycle fatigue : On the definition of the amplitude and mean value of the shear stress acting on the critical plane , 1998 .

[23]  Darrell F. Socie,et al.  Biaxial Fatigue of Inconel 718 Including Mean Stress Effects , 1985 .

[24]  Michael Vormwald,et al.  A unified expression of elastic-plastic notch stress-strain calculation in bodies subjected to multiaxial , 2008 .

[25]  Jing Deng,et al.  Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach , 2007 .

[26]  Xu Chen,et al.  Torsional fatigue with axial constant stress for Sn–3Ag–0.5Cu lead-free solder , 2014 .

[27]  Filippo Berto,et al.  Fatigue strength of structural components under multi-axial loading in terms of local energy density averaged on a control volume , 2011 .

[28]  T. Seeger,et al.  THE CONSEQUENCES OF SHORT CRACK CLOSURE ON FATIGUE CRACK GROWTH UNDER VARIABLE AMPLITUDE LOADING , 1991 .

[29]  Andrea Carpinteri,et al.  Multiaxial high-cycle fatigue criterion for hard metals , 2001 .

[30]  Fernand Ellyin,et al.  In-phase and out-of-phase multiaxial fatigue , 1991 .

[31]  Hamid Jahed,et al.  Upper and lower fatigue life limits model using energy-based fatigue properties , 2006 .

[32]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[33]  Fernand Ellyin,et al.  A Total Strain Energy Density Theory for Cumulative Fatigue Damage , 1988 .

[34]  C. M. Sonsino,et al.  Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses , 1995 .

[35]  Filippo Berto,et al.  Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading , 2014 .

[36]  C. M. Sonsino Influence of load and deformation-controlled multiaxial tests on fatigue life to crack initiation , 2001 .

[37]  Y. Nadot,et al.  Non-local stress gradient approach for multiaxial fatigue of defective material , 2008 .

[39]  Cetin Morris Sonsino,et al.  Influence of material’s ductility and local deformation mode on multiaxial fatigue response , 2011 .

[40]  Iman Khalaji,et al.  An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions , 2007 .

[41]  Filippo Berto,et al.  Multiaxial fatigue strength of severely notched cast iron specimens , 2014 .

[42]  K. S. Kim,et al.  Low-cycle fatigue of 1Cr–18Ni–9Ti stainless steel and related weld metal under axial, torsional and 90° out-of-phase loading , 2004 .

[43]  H. Jahed,et al.  The choice of cyclic plasticity models in fatigue life assessment of 304 and 1045 steel alloys based on the critical plane-energy fatigue damage approach , 2012 .

[44]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[45]  Xu Chen,et al.  LOW‐CYCLE FATIGUE UNDER NON‐PROPORTIONAL LOADING , 1996 .

[46]  V. Shlyannikov T-stress for crack paths in test specimens subject to mixed mode loading , 2013 .

[47]  Daniel Kujawski,et al.  Generalization of notch analysis and its extension to cyclic loading , 1989 .

[48]  Michael Vormwald,et al.  Short fatigue crack growth under nonproportional multiaxial elastic–plastic strains , 2006 .

[49]  Michael Vormwald,et al.  Short-crack-growth-based fatigue assessment of notched components under multiaxial variable amplitude loading , 2011 .

[50]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[51]  José Alexander Araújo,et al.  Proposition of a finite element-based approach to compute the size effect in fretting fatigue , 2006 .

[52]  G. Meneghetti,et al.  A Simple and Efficient Reformulation of the Classical Manson–Coffin Curve to Predict Lifetime Under Multiaxial Fatigue Loading—Part II: Notches , 2009 .

[53]  Andrea Carpinteri,et al.  Biaxial/Multiaxial fatigue and fracture , 2003 .

[54]  Andrea Carpinteri,et al.  Multiaxial fatigue assessment using a simplified critical plane-based criterion , 2011 .

[55]  José Alexander Araújo,et al.  Prismatic hull: A new measure of shear stress amplitude in multiaxial high cycle fatigue , 2009 .

[56]  Andrea Carpinteri,et al.  An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C‐S (Carpinteri‐Spagnoli) criterion , 2014 .

[57]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[58]  Andrea Carpinteri,et al.  Reformulation in the frequency domain of a critical plane-based multiaxial fatigue criterion , 2014 .

[59]  Filippo Berto,et al.  Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy method , 2011 .

[60]  Luca Susmel Four stress analysis strategies to use the Modified Wöhler Curve Method to perform the fatigue assessment of weldments subjected to constant and variable amplitude multiaxial fatigue loading , 2014 .