A LASSO Chart for Monitoring the Covariance Matrix

Abstract Multivariate control charts are essential tools in multivariate statistical process control. In real applications, when a multivariate process shifts, it occurs in either location or scale. Several methods have been proposed recently to monitor the covariance matrix. Most of these methods use rational subgroups and are used to detect large shifts. In this paper, we propose a new accumulative method, based on penalized likelihood estimators, that uses individual observations and is useful to detect small and persistent shifts in a process when sparsity is present.

[1]  Antonio Fernando Branco Costa,et al.  The synthetic control chart based on two sample variances for monitoring the covariance matrix , 2009, Qual. Reliab. Eng. Int..

[2]  Chien-Wei Wu,et al.  Monitoring Multivariate Process Variability for Individual Observations , 2007 .

[3]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[4]  Douglas M. Hawkins,et al.  Multivariate Exponentially Weighted Moving Covariance Matrix , 2008, Technometrics.

[5]  Douglas M. Hawkins,et al.  Self-Starting Multivariate Control Charts for Location and Scale , 2011 .

[6]  J Junyi Zhang,et al.  Cumulative sum control charts for covariance matrix , 2000 .

[7]  Arthur B. Yeh,et al.  Multivariate Control Charts for Monitoring Covariance Matrix: A Review , 2006 .

[8]  Martin J. Wainwright,et al.  Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of l1-regularized MLE , 2008, NIPS.

[9]  Wei Jiang,et al.  High-Dimensional Process Monitoring and Fault Isolation via Variable Selection , 2009 .

[10]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[11]  Arthur B. Yeh,et al.  Monitoring the covariance matrix via penalized likelihood estimation , 2013 .

[12]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[13]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[14]  Douglas M. Hawkins,et al.  A Multivariate Change-Point Model for Change in Mean Vector and/or Covariance Structure , 2009 .

[15]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[16]  Gyo-Young Cho,et al.  Multivariate Control Charts for Monitoring the Mean Vector and Covariance Matrix , 2006 .

[17]  Shiyu Zhou,et al.  Multivariate Process Variability Monitoring Through Projection , 2008 .

[18]  Chien-Wei Wu,et al.  A multivariate EWMA control chart for monitoring process variability with individual observations , 2005 .

[19]  Fugee Tsung,et al.  LASSO-based multivariate linear profile monitoring , 2012, Ann. Oper. Res..

[20]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[21]  Toshio Sakata,et al.  Likelihood ratio test for one-sided hypothesis of covariance matrices of two normal populations , 1987 .

[22]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[23]  Gyo-Young Cho,et al.  Multivariate Control Charts for Monitoring the Mean Vector and Covariance Matrix with Variable Sampling Intervals , 2011 .

[24]  George C. Runger,et al.  Multivariate Extensions to Cumulative Sum Control Charts , 2004 .

[25]  A. Erhan Mergen,et al.  Variation Charts for Multivariate Processes , 2002 .

[26]  Alexandre d'Aspremont,et al.  Convex optimization techniques for fitting sparse Gaussian graphical models , 2006, ICML.

[27]  Seyed Taghi Akhavan Niaki,et al.  New control charts for monitoring covariance matrix with individual observations , 2009, Qual. Reliab. Eng. Int..

[28]  Bin Yu,et al.  Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of boldmathell_1-regularized MLE , 2008, NIPS 2008.

[29]  William H. Woodall,et al.  Introduction to Statistical Quality Control, Fifth Edition , 2005 .

[30]  F. Aparisi,et al.  GENERALIZED VARIANCE CHART DESIGN WITH ADAPTIVE SAMPLE SIZES. THE BIVARIATE CASE , 2001 .

[31]  Neil S Barnett,et al.  DISPERSION CONTROL FOR MULTIVARIATE PROCESSES , 1996 .

[32]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[33]  G. Jasso Review of "International Encyclopedia of Statistical Sciences, edited by Samuel Kotz, Norman L. Johnson, and Campbell B. Read, New York, Wiley, 1982-1988" , 1989 .

[34]  R. Quinino,et al.  A Single Statistic for Monitoring the Covariance Matrix of Bivariate Processes , 2012 .

[35]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[36]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[37]  N. S. Barnett,et al.  DISPERSION CONTROL FOR MULTIVARIATE PROCESSES – SOME COMPARISONS , 1996 .

[38]  J. A. Calvin One-sided test of a covariance matrix with a known null value , 1994 .

[39]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[40]  Zhonghua Li,et al.  A multivariate control chart for simultaneously monitoring process mean and variability , 2010, Comput. Stat. Data Anal..

[41]  N José Alberto Vargas,et al.  Comparison of Multivariate Control Charts for Process Dispersion , 2007 .

[42]  Antonio Fernando Branco Costa,et al.  The double sampling and the EWMA charts based on the sample variances , 2008 .

[43]  Peihua Qiu,et al.  Multivariate Statistical Process Control Using LASSO , 2009 .

[44]  Jyh-Jen Horng Shiau,et al.  A MULTIVARIATE CONTROL CHART FOR DETECTING INCREASES IN PROCESS DISPERSION , 2010 .

[45]  Shing I. Chang,et al.  Multivariate EWMA control charts using individual observations for process mean and variance monitoring and diagnosis , 2008 .

[46]  Alexandre d'Aspremont,et al.  First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..